Skip to main content

Advertisement

Log in

Immobilizing TiO2 on nickel foam for an enhanced photocatalysis in NO abatement under visible light

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 photocatalyst has been adopted to abate typical pollutants, but the loading and immobilization of TiO2 on a low-cost and lightweight support will benefit the commoditization of this technology. In this work, TiO2 nanoparticles on porous metal foams were prepared by a facile infiltration and calcination for photocatalytic NO abatement. The porous structure of the Ni foam provided a sufficient contact of the photocatalyst with gaseous pollutants without severe blocking the penetration of photons. The calcination in air at 600 °C was found to impart an interdiffusion of NiO and TiO2 to form NiTiO3 and increase the adhesion of the particles on the support. The interdiffusion enhanced the NO removal efficiency under a LED lamp with photons > 400 nm, and this enhancement was more evident under photons > 450 nm. In the meantime, the composite was found to enhance the photocatalysis stability of TiO2 under ultraviolet photons that would annihilate the surface oxygen vacancies responsible for the photocatalysis of TiO2 under visible light. This demonstration provides a guideline in designing a practical photocatalyst for serving environmental needs.

Graphical abstract

The porous nickel foam supported TiO2 nanoparticles prepared by infiltration and calcination was found to impart an interdiffusion of NiO and TiO2 with the higher surface area, stronger adhesion and stable photocatalytic performance of visible light for a continuous flow reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhou M, Ou HH, Li SR et al (2021) Photocatalytic air purification using functional polymeric carbon nitrides. Adv Sci 8:36. https://doi.org/10.1002/advs.202102376

    Article  CAS  Google Scholar 

  2. Dong G, Zhao L, Wu X, Zhu M, Wang F (2019) Photocatalysis removing of NO based on modified carbon nitride: The effect of celestite mineral particles. Appl Catal B-Environ 245:459. https://doi.org/10.1016/j.apcatb.2019.01.013

    Article  CAS  Google Scholar 

  3. Abdellatif RS, Zhang G, Tang Y et al (2020) A highly efficient dual-phase GaN(O)/Nb2O5(N) photocatalyst prepared through nitridation and reoxidation process for NO removal. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126199

    Article  Google Scholar 

  4. Gan Y, Abdellatif HRS, Zhang J et al (2021) Photocatalytic nitrogen-oxide conversion in red soil. J Clean Prod 326:10. https://doi.org/10.1016/j.jclepro.2021.129377

    Article  CAS  Google Scholar 

  5. Wan YS, Li JB, Ni JP, Wang C, Ni CS, Chen H (2022) Crystal-facet and microstructure engineering in ZnO for photocatalytic NO oxidation. J Hazard Mater 435:10. https://doi.org/10.1016/j.jhazmat.2022.129073

    Article  CAS  Google Scholar 

  6. Guo Q, Zhou CY, Ma ZB, Yang XM (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:26. https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  7. Shen C, Wang YJ, Xu JH, Luo GS (2012) Facile synthesis and photocatalytic properties of TiO2 nanoparticles supported on porous glass beads. Chem Eng J (Lausanne) 209:478. https://doi.org/10.1016/j.cej.2012.08.044

    Article  CAS  Google Scholar 

  8. Zhang R, Ran T, Cao Y et al (2020) Surface hydrogen atoms promote oxygen activation for solar light-driven NO oxidization over monolithic alpha-Ni(OH)(2)/Ni foam. Environ Sci Technol 54:16221. https://doi.org/10.1021/acs.est.0c05635

    Article  CAS  Google Scholar 

  9. Yang L, Hakki A, Zheng L, Jones MR, Wang F, Macphee DE (2019) Photocatalytic concrete for NOx abatement: supported TiO2 efficiencies and impacts. Cem Concr Res 116:57. https://doi.org/10.1016/j.cemconres.2018.11.002

    Article  CAS  Google Scholar 

  10. Tang Z, Zhu FF, Zhou JC et al (2022) Monolithic NF@ZnO/Au@ZIF-8 photocatalyst with strong photo-thermal-magnetic coupling and selective-breathing effects for boosted conversion of CO2 to CH4. Appl Catal B-Environ 309:12. https://doi.org/10.1016/j.apcatb.2022.121267

    Article  CAS  Google Scholar 

  11. Suligoj A, Stanger UL, Ristic A, Mazaj M, Verhovsek D, Tusar NN (2016) TiO2-SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Appl Catal B-Environ 184:119. https://doi.org/10.1016/j.apcatb.2015.11.007

    Article  CAS  Google Scholar 

  12. Magnone E, Kim MK, Lee HJ, Park JH (2021) Facile synthesis of TiO2-supported Al2O3 ceramic hollow fiber substrates with extremely high photocatalytic activity and reusability. Ceram Int 47:7764. https://doi.org/10.1016/j.ceramint.2020.11.121

    Article  CAS  Google Scholar 

  13. Sathishkumar K, Sowmiya K, Pragasan LA et al (2022) Enhanced photocatalytic degradation of organic pollutants by Ag-TiO2 loaded cassava stem activated carbon under sunlight irradiation. Chemosphere 302:7. https://doi.org/10.1016/j.chemosphere.2022.134844

    Article  CAS  Google Scholar 

  14. Guo H, Kemell M, Heikkilä M, Leskelä M (2010) Noble metal-modified TiO2 thin film photocatalyst on porous steel fiber support. Appl Catal B 95:358. https://doi.org/10.1016/j.apcatb.2010.01.014

    Article  CAS  Google Scholar 

  15. Kamegawa T, Ishiguro Y, Seto H, Yamashita H (2015) Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification. J Mater Chem A 3:2323. https://doi.org/10.1039/c4ta06020b

    Article  CAS  Google Scholar 

  16. Zeng QM, Ni JP, Mariotti D, Lu LY, Chen H, Ni CS (2022) Plasma-treatment of polymeric carbon nitride for efficient NO abatement under visible light. J Phys D-Appl Phys 55:12. https://doi.org/10.1088/1361-6463/ac782d

    Article  Google Scholar 

  17. Debokx PK, Bonne RLC, Geus JW (1987) Strong metal-support interaction in Ni/TiO2 catalysts—the origin of tiox moieties on the surface of nickel particles. Appl Catal 30:33. https://doi.org/10.1016/s0166-9834(00)81009-x

    Article  CAS  Google Scholar 

  18. Irwin MD, Buchholz B, Hains AW, Chang RPH, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci USA 105:2783. https://doi.org/10.1073/pnas.0711990105

    Article  Google Scholar 

  19. Lin ZY, Du C, Yan B, Wang CX, Yang GW (2018) Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H-2 evolution. Nat Commun 9:11. https://doi.org/10.1038/s41467-018-06456-y

    Article  CAS  Google Scholar 

  20. Xu X, Zhang H, Tong Y et al (2021) Tuning Ni3+ quantity of NiO via doping of cations with varied valence states: the key role of Ni3+ on the reactivity. Appl Surf Sci 550:149316. https://doi.org/10.1016/j.apsusc.2021.149316

    Article  CAS  Google Scholar 

  21. Huang H, Xiao K, Tian N et al (2017) Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J Mater Chem A 5:17452. https://doi.org/10.1039/c7ta04639a

    Article  CAS  Google Scholar 

  22. Ni CS, Carolan D, Rocks C et al (2018) Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications. Green Chem 20:2101. https://doi.org/10.1039/c8gc00200b

    Article  CAS  Google Scholar 

  23. Uricchio A, Nadal E, Plujat B, Plantard G, Massines F, Fanelli F (2021) Low-temperature atmospheric pressure plasma deposition of TiO2-based nanocomposite coatings on open-cell polymer foams for photocatalytic water treatment. Appl Surf Sci 561:15. https://doi.org/10.1016/j.apsusc.2021.150014

    Article  CAS  Google Scholar 

  24. Tran SBT, Choi H, Oh S, Park JY (2019) Defective Nb2O5-supported Pt catalysts for CO oxidation: promoting catalytic activity via oxygen vacancy engineering. J Catal 375:124. https://doi.org/10.1016/j.jcat.2019.05.017

    Article  CAS  Google Scholar 

  25. Zheng J, Zhou W, Liu T, Liu S, Wang C, Guo L (2017) Homologous NiO//Ni2P nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. Nanoscale 9:4409. https://doi.org/10.1039/c6nr07953a

    Article  CAS  Google Scholar 

  26. Xiong DH, Li W, Liu LF (2017) Vertically aligned porous Nickel(II) hydroxide nanosheets supported on carbon paper with long-term oxygen evolution performance. Chem- Asian J 12:543. https://doi.org/10.1002/asia.201601590

    Article  CAS  Google Scholar 

  27. Cottineau T, Rouet A, Fernandez V, Brohan L, Richard-Plouet M (2014) Intermediate band in the gap of photosensitive hybrid gel based on titanium oxide: role of coordinated ligands during photoreduction. J Mater Chem A 2:11499. https://doi.org/10.1039/c4ta02127d

    Article  CAS  Google Scholar 

  28. Zhao W, Zhang K, Wu LC, Wang Q, Shang DH, Zhong Q (2021) Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3. J Colloid Interface Sci 581:76. https://doi.org/10.1016/j.jcis.2020.07.131

    Article  CAS  Google Scholar 

  29. Bharti B, Kumar S, Lee H-N, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6:32355. https://doi.org/10.1038/srep32355

    Article  CAS  Google Scholar 

  30. El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747. https://doi.org/10.1016/j.mssp.2013.05.018

    Article  CAS  Google Scholar 

  31. Lakhera SK, Neppolian B (2020) Role of molecular oxygen on the synthesis of Ni(OH)(2)/TiO2 photocatalysts and its effect on solar hydrogen production activity. Int J Hydrog Energy 45:7627. https://doi.org/10.1016/j.ijhydene.2019.10.142

    Article  CAS  Google Scholar 

  32. Stevanovic A, Buettner M, Zhang Z, Yates JT Jr (2012) Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc 134:324. https://doi.org/10.1021/ja2072737

    Article  CAS  Google Scholar 

  33. Cheng HM, Ma JM, Zhao ZG, Qi LM (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663. https://doi.org/10.1021/cm00052a010

    Article  CAS  Google Scholar 

  34. Singh SK, Singhal R (2018) Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications. Appl Surf Sci 439:919. https://doi.org/10.1016/j.apsusc.2018.01.112

    Article  CAS  Google Scholar 

  35. Ruiz-Preciado MA, Bulou A, Makowska-Janusik M, Gibaud A, Morales-Acevedo A, Kassiba A (2016) Nickel titanate (NiTiO3) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis. CrystEngComm 18:3229. https://doi.org/10.1039/c6ce00306k

    Article  CAS  Google Scholar 

  36. Mrabet C, Ben Amor M, Boukhachem A, Amlouk M, Manoubi T (2016) Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram Int 42:5963. https://doi.org/10.1016/j.ceramint.2015.12.144

    Article  CAS  Google Scholar 

  37. Rao X, Dou HL, Long D, Zhang YP (2020) Ag3PO4/g-C3N4 nanocomposites for photocatalytic degradating gas phase formaldehyde at continuous flow under 420 nm LED irradiation. Chemosphere 244:9. https://doi.org/10.1016/j.chemosphere.2019.125462

    Article  CAS  Google Scholar 

  38. Pfeifer V, Erhart P, Li S et al (2013) Energy band alignment between anatase and rutile TiO2. J Phys Chem Lett 4:4182. https://doi.org/10.1021/jz402165b

    Article  CAS  Google Scholar 

  39. Gerischer H (1995) Photocatalysis in aqueous-solution with small TiO2 particles and the dependence of the quantum yield on particle-size and light-intensity. Electrochim Acta 40:1277. https://doi.org/10.1016/0013-4686(95)00058-m

    Article  CAS  Google Scholar 

  40. He F, Jeon W, Choi W (2021) Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat Commun 12:4. https://doi.org/10.1038/s41467-021-22839-0

    Article  CAS  Google Scholar 

  41. Destaillats H, Sleiman M, Sullivan DP, Jacquiod C, Sablayrolles J, Molins L (2012) Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Appl Catal B-Environ 128:159. https://doi.org/10.1016/j.apcatb.2012.03.014

    Article  CAS  Google Scholar 

  42. Huy TH, Phat BD, Kang F et al (2019) SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere 215:323. https://doi.org/10.1016/j.chemosphere.2018.10.033

    Article  CAS  Google Scholar 

  43. Ohko Y, Nakamura Y, Fukuda A, Matsuzawa S, Takeuchi K (2008) Photocatalytic oxidation of nitrogen dioxide with TiO2 thin films under continuous UV-light illumination. J Phys Chem C 112:10502. https://doi.org/10.1021/jp802959c

    Article  CAS  Google Scholar 

  44. Soylu AM, Polat M, Erdogan DA et al (2014) TiO2-Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Appl Surf Sci 318:142. https://doi.org/10.1016/j.apsusc.2014.02.065

    Article  CAS  Google Scholar 

  45. Pan XY, Yang MQ, Fu XZ, Zhang N, Xu YJ (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601. https://doi.org/10.1039/c3nr00476g

    Article  CAS  Google Scholar 

  46. Tian JJ, Deng HM, Sun L, Kong H, Yang PX, Chu JH (2012) Influence of Ni doping on phase transformation and optical properties of TiO2 films deposited on quartz substrates by sol-gel process. Appl Surf Sci 258:4893. https://doi.org/10.1016/j.apsusc.2012.01.108

    Article  CAS  Google Scholar 

  47. Zhong FY, Yuan CW, He Y, Sun YJ, Sheng JP, Dong F (2022) Dual-quantum-dots heterostructure with confined active interface for promoted photocatalytic NO abatement. J Hazard Mater 438:10. https://doi.org/10.1016/j.jhazmat.2022.129463

    Article  CAS  Google Scholar 

  48. Wang H, He WJ, Dong XA et al (2017) In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C3N4 nanosheets. RSC Adv 7:19280. https://doi.org/10.1039/c7ra00879a

    Article  CAS  Google Scholar 

  49. Huo WC, Dong XA, Li JY et al (2019) Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chem Eng J 361:129. https://doi.org/10.1016/j.cej.2018.12.071

    Article  CAS  Google Scholar 

  50. Zhu LL, Wu YF, Wu SJ, Dong F, Xia JX, Jiang B (2021) Tuning the active sites of atomically thin defective Bi12O17Cl2 via incorporation of subnanometer clusters. ACS Appl Mater Interfaces 13:9216. https://doi.org/10.1021/acsami.0c21454

    Article  CAS  Google Scholar 

  51. Zhang WD, Wang Y, Wang Y, Liang Y, Dong F (2022) Highly efficient photocatalytic NO removal and in situ DRIFTS investigation on SrSn(OH)(6). Chin Chem Lett 33:1259. https://doi.org/10.1016/j.cclet.2021.07.065

    Article  CAS  Google Scholar 

  52. Ma J, Wang C, He H (2016) Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Appl Catal B: Environ 184:28. https://doi.org/10.1016/j.apcatb.2015.11.013

    Article  CAS  Google Scholar 

  53. Abdellatif HRS, Zhang G, Wang XT et al (2019) Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units. Chem Eng J 370:875. https://doi.org/10.1016/j.cej.2019.03.266

    Article  CAS  Google Scholar 

  54. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A-Chem 161:205. https://doi.org/10.1016/s1381-1169(00)00362-9

    Article  CAS  Google Scholar 

  55. Shi ML, Rhimi B, Zhang K, Xu JK, Bahnemann DW, Wang CAY (2021) Visible light-driven novel Bi2Ti2O7/CaTiO3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. Chemosphere 275:11. https://doi.org/10.1016/j.chemosphere.2021.130083

    Article  CAS  Google Scholar 

  56. Yang L, Hakki A, Wang FZ, Macphee DE (2017) Different roles of water in photocatalytic DeNOx mechanisms on TiO2: basis for engineering nitrate selectivity? ACS Appl Mater Interfaces 9:17035. https://doi.org/10.1021/acsami.7b01989

    Article  CAS  Google Scholar 

  57. Kim Y-S, Chung Y-C, Lee KS (2006) The electronic structure of Ni doped rutile TiO2. J Electroceram 17:951. https://doi.org/10.1007/s10832-006-7985-6

    Article  CAS  Google Scholar 

  58. Huang Y, Ho WK, Ai ZH, Song XA, Zhang LZ, Lee SC (2009) Aerosol-assisted flow synthesis of B-doped, Ni-doped and B-Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Appl Catal B-Environ 89:398. https://doi.org/10.1016/j.apcatb.2008.12.020

    Article  CAS  Google Scholar 

  59. Fujiwara K, Muller U, Pratsinis SE (2016) Pd subnano-clusters on TiO2 for solar-light removal of NO. ACS Catal 6:1887. https://doi.org/10.1021/acscatal.5b02685

    Article  CAS  Google Scholar 

  60. Li J, Wang D, Guan R et al (2020) Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain Chem Eng 8:18258. https://doi.org/10.1021/acssuschemeng.0c06775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.N. and J.N. is thankful to Bayu Young Scholar and Yingcai Talent from Chongqing, respectively.

Funding

Funding from Chongqing S&T Committee (cstc2021ycjh-bgzxm0162) and Fundamental Research Funds for the Central Universities (SWURC2020002) and Innovation Funding for Oversee Returnees from Chongqing HR Committee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengsheng Ni or Hong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1865 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Chen, J., Wan, Y. et al. Immobilizing TiO2 on nickel foam for an enhanced photocatalysis in NO abatement under visible light. J Mater Sci 57, 15722–15736 (2022). https://doi.org/10.1007/s10853-022-07628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07628-4

Navigation