Skip to main content
Log in

Tailoring core@shell structure of Cu2−xSe@PDAs for synergistic solar-driven water evaporation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solar-driven water evaporation, a promising method to obtain freshwater resources, has drawn intensive attention recent years due to the abundance of solar energy and scarcity of clean water. Here, we introduce a robust strategy to obtain a series of polydopamine-modified Cu2−xSe nano-composites (Cu2−xSe@PDAs) with core@shell structure, which has strong absorption in solar spectrum and outstanding photothermal conversion efficiency for freshwater production. Temperature of the obtained Cu2−xSe@PDA30 aqueous solution could increase from 19.4 to 70.6 °C in 5 min under the irradiation of 980-nm NIR laser with the power density of 0.002 kW·cm−2. Under 0.5 simulated sunlight irradiation, water evaporation rates were as high as 3.36 kg·m−2·h−1 when using the Cu2−xSe@PDA30 for desalination, indicating excellent evaporation efficiency under weak light. Moreover, the obtained Cu2−xSe@PDA30 can also apply to wastewater purification and the evaporation rate could reach 2.71 kg·m−2·h−1 under an irradiation of simulated sunlight with intensity of 1 kW·m−2. These results provided new insight into solar desalination and wastewater treatment using nanoscale semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333:712–717

    Article  CAS  Google Scholar 

  2. Guo X, Gao H, Wang S, Yin L, Dai Y (2020) Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination. Desalination 488:114535

    Article  CAS  Google Scholar 

  3. Gao M, Zhu L, Peh CK, Ho GW (2019) Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci 12:841–864

    Article  CAS  Google Scholar 

  4. Morciano M, Fasano M, Bergamasco L, Albiero A, Curzio ML, Asinari P, Chiavazzo E (2020) Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets. Appl Energy 258:114086

    Article  CAS  Google Scholar 

  5. Kingsbury RS, Wang J, Coronell O (2020) Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. J Membr Sci 604:117998

    Article  CAS  Google Scholar 

  6. Lilane A, Saifaoui D, Hariss S, Jenkal H, Chouiekh M (2020) Modeling and simulation of the performances of the reverse osmosis membrane. Mater Today Proc 24:114–118

    Article  CAS  Google Scholar 

  7. Gholizadeh T, Vajdi M, Rostamzadeh H (2020) Freshwater and cooling production via integration of an ethane ejector expander transcritical refrigeration cycle and a humidification-dehumidification unit. Desalination 477, 114259

    Article  CAS  Google Scholar 

  8. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28

    Article  Google Scholar 

  9. Gao M, Peh CK, Phan HT, Zhu L, Ho GW (2018) Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Adv Energy Mater 8:1800711

    Article  CAS  Google Scholar 

  10. Chen M, Tang S, Guo Z, Wang X, Mo S, Huang X, Liu G, Zheng N (2014) Core-shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy. Adv Mater 26:8210–8216

    Article  CAS  Google Scholar 

  11. Wang Q, Wang H, Yang Y, Jin L, Liu Y, Wang Y, Yan X, Xu J, Gao R, Lei P, Zhu J, Wang Y, Song S, Zhang H (2019) Plasmonic Pt superstructures with boosted near-infrared absorption and photothermal conversion efficiency in the second biowindow for cancer therapy. Adv Mater 31:1904836

    Article  CAS  Google Scholar 

  12. Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J (2016) 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photon 10:393–398

    Article  CAS  Google Scholar 

  13. Wu X, Robson ME, Phelps JL, Tan JS, Shao B, Owens G, Xu H (2019) A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 56:708–715

    Article  CAS  Google Scholar 

  14. Zhang C, Yan C, Xue Z, Yu W, Xie Y, Wang T (2016) Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small 12:5320–5328

    Article  CAS  Google Scholar 

  15. Wei N, Li Z, Li Q, Yang E, Xu R, Song X, Sun J, Dou C, Tian J (2021) Cui H, Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation. J Colloid Interface Sci 588:369–377

    Article  CAS  Google Scholar 

  16. Lu Q, Shi W, Yang H, Wang X (2020) Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight. Adv Mater 32:2001544

    Article  CAS  Google Scholar 

  17. Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E, Jia C, Gong A, Jiang F, Zhu Y, Yang B, Xie J, Hu L (2017) Highly flexible and efficient solar steam generation device. Adv Mater 29:1701756

    Article  CAS  Google Scholar 

  18. Zhuang P, Fu H, Xu N, Li B, Xu J, Zhou L (2020) Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect. Nanophotonics 9:4601–4608

    Article  CAS  Google Scholar 

  19. Chen C, Song J, Zhu S, Li Y, Kuang Y, Wan J, Kirsch D, Xu L, Wang Y, Gao T, Wang Y, Huang H, Gan W, Gong A, Li T, Xie J, Hu L (2018) Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 4:544–554

    Article  CAS  Google Scholar 

  20. Wang K, Cheng Z, Li P, Zheng Y, Liu Z, Cui L, Xu J, Liu J (2021) Three-dimensional self-floating foam composite impregnated with porous carbon and polyaniline for solar steam generation. J Colloid Interface Sci 581:504–513

    Article  CAS  Google Scholar 

  21. Wilson HM, Shakeelur Rahman AR, Parab AE, Jha N (2019) Ultra-low cost cotton based solar evaporation device for seawater desalination and waste water purification to produce drinkable water. Desalination 456:85–96

    Article  CAS  Google Scholar 

  22. Mei T, Chen J, Zhao Q, Wang D (2020) Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation. ACS Appl Mater Interfaces 12:42686–42695

    Article  CAS  Google Scholar 

  23. Li W, Li Z, Bertelsmann K, Fan DE (2019) Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv Mater 31:1900720

    Article  CAS  Google Scholar 

  24. Lie SQ, Wang DM, Gao MX, Huang CZ (2014) Controllable copper deficiency in Cu2−xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence. Nanoscale 6:10289–10296

    Article  CAS  Google Scholar 

  25. Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C (2009) Plasmonic Cu2−xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides. J Am Chem Soc 131:4253–4261

    Article  CAS  Google Scholar 

  26. Dorfs D, Härtling T, Miszta K, Bigall NC, Kim MR, Genovese A, Falqui A, Povia M, Manna L (2011) Reversible tunability of the near-infrared valence band plasmon resonance in Cu2–xSe nanocrystals. J Am Chem Soc 133:11175–11180

    Article  CAS  Google Scholar 

  27. Zou Y, Chen X, Yang P, Liang G, Yang Y, Gu Z, Li Y (2020) Regulating the absorption spectrum of polydopamine. Sci Adv 6:4696

    Article  CAS  Google Scholar 

  28. Liu Y, Li Z, Yin Z, Zhang H, Gao Y, Huo G, Wu A, Zeng L (2020) Amplified photoacoustic signal and enhanced photothermal conversion of polydopamine-coated gold nanobipyramids for phototheranostics and synergistic chemotherapy. ACS Appl Mater Interfaces 12:14866–14875

    Article  CAS  Google Scholar 

  29. Wang S, Zhang Y, Li Y, Chen K, Dai Y, Zhou D, Ali A, Yang S, Xu X, Jiang T, Zhu L (2021) Au nanostars@PDA@Fe3O4-based multifunctional nanoprobe for integrated tumor diagnosis and photothermal therapy. Mater Des 205:109707

    Article  CAS  Google Scholar 

  30. Song J, Liu H, Lei M, Tan H, Chen Z, Antoshin A, Payne G, Qu X, Liu C (2020) Redox-channeling polydopamine-ferrocene (PDA-Fc) coating to confer context-dependent and photothermal antimicrobial activities. ACS Appl Mater Interfaces 12:8915–8928

    Article  CAS  Google Scholar 

  31. Yu S, Li G, Liu R, Ma D, Xue W (2018) Dendritic Fe3O4@poly (dopamine)@PAMAM nanocomposite as controllable NO-releasing material: a synergistic photothermal and NO antibacterial study. Adv Funct Mater 28:1707440

    Article  CAS  Google Scholar 

  32. Wu X, Wang Y, Wu P, Zhao J, Lu Y, Yang X, Xu H (2021) Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv Funct Mater 31:2102618

    Article  CAS  Google Scholar 

  33. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    Article  CAS  Google Scholar 

  34. Cheng H, Zhou S, Xie M, Gilroy KD, Zhu Z, Xia Y (2021) Colloidal nanospheres of amorphous selenium: facile synthesis, size control, and optical properties. ChemNanoMat 7:620–625

    Article  CAS  Google Scholar 

  35. Zhang S, Fang C, Wei W, Jin B, Tian Y, Shen Y, Yang J, Gao H (2007) Synthesis and electrochemical behavior of crystalline Ag2Se nanotubes. J Phys Chem C 111:4168–4174

    Article  CAS  Google Scholar 

  36. Yang L, Chen ZG, Han G, Hong M, Zou J (2016) Impacts of Cu deficiency on the thermoelectric properties of Cu2−xSe nanoplates. Acta Mater 113:140–146

    Article  CAS  Google Scholar 

  37. Yu J, Zhao K, Qiu P, Shi X, Chen L (2017) Thermoelectric properties of copper-deficient Cu2−xSe (0.05≤x≤0.25) binary compounds. Ceram Int 43:11142–11148

    Article  CAS  Google Scholar 

  38. Yang Z, Liu X, Wang X, Wang P, Ruan S, Xie A, Shen Y, Zhu M (2020) 4-in-1 phototheranostics: PDA@CoPA-LA nanocomposite for photothermal imaging/photothermal/in-situ O2 generation/photodynamic combination therapy. Chem Eng J 387:124113

    Article  CAS  Google Scholar 

  39. Abdelghany AM, Mekhail MS, Abdelrazek EM, Aboud MM (2015) Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles. J Alloys Compd 646:326–332

    Article  CAS  Google Scholar 

  40. Loría-Bastarrachea MI, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Vázquez-Torres H, Ávila-Ortega A (2011) ATG/FTIR study on the thermal degradation of poly (vinyl pyrrolidone). J Therm Anal Calorim 104:737–742

    Article  CAS  Google Scholar 

  41. Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai GA (2006) Probing the interaction of poly (vinylpyrrolidone) with platinum nanocrystals by UV−Raman and FTIR. J Phys Chem B 110:23052–23059

    Article  CAS  Google Scholar 

  42. Song L, Zhang XF, Wang Z, Zheng T, Yao J (2021) Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination 507:115024

    Article  CAS  Google Scholar 

  43. Zhang XF, Wang Z, Song L, Feng Y, Yao J (2020) Chinese ink enabled wood evaporator for continuous water desalination. Desalination 496:114727

    Article  CAS  Google Scholar 

  44. Kuang Y, Chen C, He S, Hitz EM, Wang Y, Gan W, Mi R, Hu L (2019) A high-performance self-regenerating solar evaporator for continuous water desalination. Adv Mater 31:1900498

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 52102346 and 52002119), the State Key R & D Program (No. 2021YFB3400800), the Startup Funds from the Henan University of Science and Technology (13480095, 13480096, 13554031 and 13554032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Xia, W., Zhao, Z. et al. Tailoring core@shell structure of Cu2−xSe@PDAs for synergistic solar-driven water evaporation. J Mater Sci 57, 11725–11734 (2022). https://doi.org/10.1007/s10853-022-07353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07353-y

Navigation