Skip to main content
Log in

Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solar thermal interfacial water evaporation is proposed as a promising route to address freshwater scarcity, which can reduce energy consumption and have unlimited application scenarios. The large semiconductor family with controllable bandgap and good chemo-physical stability are considered as good candidates for photo-evaporation. However, the evaporation rate is not satisfactory because the rational control of nano/micro structure and composition is still in its infancy stage. Herein, by systemically analyzing the photo-thermal evaporation processes, we applied the hollow multishelled structure (HoMS) into this application. Benefiting from the multishelled and hierarchical porous structure, the light absorption, thermal regulation, and water transport are simultaneously optimized, resulting in a water evaporation rate of 3.2 kg·m−2·h−1, which is among the best performance in solar-vapour generation. The collected water from different water resources meets the World Health Organization standard for drinkable water. Interestingly, by using the CuO/Cu2O system, reactive oxygen species were generated for water disinfection, showing a new route for efficient solar-vapour generation and a green way to obtain safe drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641.

    Article  CAS  Google Scholar 

  2. Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018.

    Article  CAS  Google Scholar 

  3. Al-Abri, M.; Al-Ghafri, B.; Bora, T.; Dobretsov, S.; Dutta, J.; Castelletto, S.; Rosa, A.; Boretti, L. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water. 2019, 2, 2.

    Article  CAS  Google Scholar 

  4. Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

    Article  Google Scholar 

  5. Wang, Y. W.; Zhang, J. C.; Liang, W. K.; Yang, H.; Guan, T. F.; Zhao, B.; Sun, Y. H.; Chi, L. F.; Jiang, L. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem. 2021, 3, 2127–2142.

    Google Scholar 

  6. Zhou, L.; Li, X. Q.; Ni, G. W.; Zhu, S. N.; Zhu, J. The revival of thermal utilization from the sun: Interfacial solar vapor generation. Natl. Sci. Rev. 2019, 6, 562–578.

    Article  CAS  Google Scholar 

  7. Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

    Article  Google Scholar 

  8. Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

    Article  CAS  Google Scholar 

  9. Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

    Article  CAS  Google Scholar 

  10. Li, W.; Li, X.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2T MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    Article  CAS  Google Scholar 

  11. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

    Article  CAS  Google Scholar 

  12. Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

    Article  Google Scholar 

  13. Ni, G.; Li, G.; Boriskina, S. V.; Li, H. X.; Yang, W. L.; Zhang, T. J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126.

    Article  CAS  Google Scholar 

  14. Xu, W. C.; Hu, X. Z.; Zhuang, S. D.; Wang, Y. X.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 2018, 8, 1702884.

    Article  Google Scholar 

  15. Wei, Y. Z.; Yang, N. L.; Huang, K. K.; Wan, J. W.; You, F. F.; Yu, R. B.; Feng, S. H.; Wang, D. Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport. Adv. Mater. 2020, 32, 2002556.

    Article  CAS  Google Scholar 

  16. Lien, D. H.; Dong, Z. H.; Retamal, J. R. D.; Wang, H. P.; Wei, T. C.; Wang, D.; He, J. H.; Cui, Y. Resonance-enhanced absorption in hollow nanoshell spheres with omnidirectional detection and high responsivity and speed. Adv. Mater. 2018, 30, 1801972.

    Article  Google Scholar 

  17. Zhao, D. C.; Yang, N. L.; Wei, Y.; Jin, Q.; Wang, Y. L.; He, H. Y.; Yang, Y.; Han, B.; Zhang, S. J.; Wang, D. Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nat. Commun. 2020, 11, 4450.

    Article  CAS  Google Scholar 

  18. Chen, X. B.; Yang, N. L.; Wang, Y. L.; He, H. Y.; Wang, J. Y.; Wan, J. W.; Jiang, H. Y.; Xu, B.; Wang, L. M.; Yu, R. B.; et, al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 2021, 33, 2107400.

    Google Scholar 

  19. Ong, W. K.; Yao, X. M.; Jana, D.; Li, M. H.; Zhao, Y. L.; Luo, Z. Efficient production of reactive oxygen species from Fe3O4/ZnPC coloaded nanoreactor for cancer therapeutics in vivo. Small Struct. 2020, 1, 2000065.

    Article  Google Scholar 

  20. Sun, Y. D.; Shi, H.; Cheng, X. Y.; Wu, L. Y.; Wang, Y. Q.; Zhou, Z. Y.; He, J.; Chen, H. Y.; Ye, D. J. Degradable hybrid CuS nanoparticles for imaging-guided synergistic cancer therapy via low-power NIR-II light excitation. CCS Chem. 2020, 3, 1336–1349.

    Article  Google Scholar 

  21. Huang, Y.; Gao Q.; Li, X.; Gao, Y. F.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340–2350.

    Article  CAS  Google Scholar 

  22. Wang, L.; Wan, J. W.; Wang, J. Y.; Wang, D. Small structures bring big things: Performance control of hollow multishelled structures. Small Struct. 2021, 2, 2000041.

    Article  CAS  Google Scholar 

  23. Wang, C.; Wang J. Y.; Hu, W. P.; Wang, D. Controllable synthesis of hollow multishell structured Co3O4 with improved rate performance and cyclic stability for supercapacitors. Chem. Res. Chin. Univ. 2020, 36, 68–73.

    Article  CAS  Google Scholar 

  24. Zhao, J. L.; Yang, M.; Yang, N. L.; Wang, J. Y.; Wang, D. Hollow micro-/nanostructure reviving lithium-sulfur batteries. Chem. Res. Chin. Univ. 2020, 36, 313–319.

    Article  CAS  Google Scholar 

  25. Wang, J. Y.; Wan, J. W.; Yang, N. L.; Li, Q.; Wang, D. Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour. Nat. Rev. Chem. 2020, 4, 159–168.

    Article  CAS  Google Scholar 

  26. Wang, P.; Mao, D.; Wan, J.; Qi, Q.; Du, J.; Wang, D. Effect of hollow multi-shelled TiO2 on mechanical properties of epoxy resin composites. Chem. Res. Chin. Univ. 2021, 42, 3218–3224.

    Google Scholar 

  27. Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 60, 6926–6931.

    Article  CAS  Google Scholar 

  28. Wang, Z. L. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 2003, 15, 1497–1514.

    Article  CAS  Google Scholar 

  29. Nassiri, Y.; Mansot, J. L.; Wéry, J.; Vogel, T. G.; Amiard, J. C. Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum. Arch. Environ. Contam. Toxicol. 1997, 33, 147–155.

    Article  CAS  Google Scholar 

  30. Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O’Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.

    Article  CAS  Google Scholar 

  31. Bersani, M.; Gupta, K.; Mishra, A. K.; Lanza, R.; Taylor, S. F. R.; Islam, H. U.; Hollingsworth, N.; Hardacre, C.; de Leeuw, N. H.; Darr, J. A. Combined EXAFS, XRD, DRIFTS, and DFT study of nano copper-based catalysts for CO2 hydrogenation. ACS Catal. 2016, 6, 5823–5833.

    Article  CAS  Google Scholar 

  32. Kim, J. Y.; Rodriguez, J. A.; Hanson, J. C.; Frenkel, A. I.; Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 2003, 125, 10684–10692.

    Article  CAS  Google Scholar 

  33. Carrasco, E.; del Rosal, B.; Sanz-Rodríguez, F.; de la Fuente, Á. J.; Gonzalez, P. H.; Rocha, U.; Kumar, K. U.; Jacinto, C.; Solé, J. G.; Jaque, D. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 2015, 25, 615–626.

    Article  CAS  Google Scholar 

  34. Toe, C. Y.; Zheng, Z. K.; Wu, H.; Scott, J.; Amal, R.; Ng, Y. H. Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self-reduction. Angew. Chem., Int. Ed. 2018, 57, 13613–13617.

    Article  CAS  Google Scholar 

  35. Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

    Article  Google Scholar 

  36. World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum [Online]. https://www.who.int/publications/i/item/9789241549950 (accessed Sep. 20, 2021).

  37. Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

    Article  CAS  Google Scholar 

  38. Hawkins, C. L.; Davies, M. J. EPR studies on the selectivity of hydroxyl radical attack on amino acids and peptides. J. Chem. Soc. Perkin Trans. 1998, 2, 2617–2622.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 92163209, 21931012, 21971244, 51872024, and 51932001), and Talent Team of Taishan Scholar’s Advantageous and Characteristic Disciplines of Shandong Province. Prof. Lin thanks the Taishan Scholarship Project of Shandong Province (No. tsqn201909115). The authors also thank the BL1W2A in BSRF, BL14W1, BL11B in SSRF for synchrotron radiation measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nailiang Yang, Jianjian Lin, Ranbo Yu or Dan Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, P., Wang, J. et al. Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Res. 15, 4117–4123 (2022). https://doi.org/10.1007/s12274-021-4063-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4063-y

Keywords

Navigation