Skip to main content
Log in

Bioinspired robust top-perforated micro-conical array of TC4 surface fabricated by pulsed laser ablation for enhanced anti-icing property

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The poor wear performance of passive anti-icing micro/nano-structured TC4 surface restricts its wide applications in engineering field. Interestingly, it was observed that microstructure of sled dog hair exhibits a low-temperature-adaptive property to keep away from ice accumulation by the perforations located in the center of the hair shaft and the cuticle of lobster claw reveals extraordinary mechanical strength with micro-porous structures. In this work, bioinspired top-perforated micro-conical array structure is proposed on TC4 surfaces compatible with anti-icing property and mechanical durability. The microstructured unit is composed of a micro-conical frustum and a perforated micro-hole on the top, which could be fabricated on TC4 via direct nanosecond ultraviolet laser processing. The delayed freezing time of the water droplet on the bioinspired surface can be significantly extended by 18 times, exhibiting excellent superhydrophobicity with WCAs exceeding 164°. Meanwhile, the bioinspired anti-icing surface shows excellent wear resistance by both abrasion and water impinging tests, where the delayed freezing time does not obviously decrease after 30 mins’ continuous water impinging. The top-perforation of the micro-conical could enhance the anti-icing property and durability simultaneously and the results were explained based on finite element analysis. The proposed bioinspired TC4 structure fabricated by pulsed laser ablation has great engineering potentials in extremely cold and humid environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

TPMCS:

Top-perforated micro-conical surface

WCA:

Water contact angle

References

  1. Lian ZX, Xu JK, Wang ZB, Yu HD (2020) Biomimetic superlyophobic metallic surfaces: focusing on their fabrication and applications. J Bionic Eng 17(1):1–33. https://doi.org/10.1007/s42235-020-0002-y

    Article  Google Scholar 

  2. Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4(12):7699–7707. https://doi.org/10.1021/nn102557p

    Article  CAS  Google Scholar 

  3. Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D (2009) Anti-Icing superhydrophobic coatings. Langmuir 25(21):12444–12448. https://doi.org/10.1021/la902882b

    Article  CAS  Google Scholar 

  4. Guo P, Zheng YM, Wen MX, Song C, Lin YC, Jiang L (2012) Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv Mater 24(19):2642–2648. https://doi.org/10.1002/adma.201104412

    Article  CAS  Google Scholar 

  5. Tourkine P, Le Merrer M, Quere D (2009) Delayed freezing on water repellent materials. Langmuir 25(13):7214–7216. https://doi.org/10.1021/la900929u

    Article  CAS  Google Scholar 

  6. Varanasi KK, Deng T, Smith JD, Hsu M, Bhate N (2010) Frost formation and ice adhesion on superhydrophobic surfaces. Appl Phys Lett 97(23):234102. https://doi.org/10.1063/1.3524513

    Article  CAS  Google Scholar 

  7. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A (2011) Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol 67(1–2):58–67. https://doi.org/10.1016/j.coldregions.2011.02.006

    Article  Google Scholar 

  8. Li J, Zhou YJ, Wang WB, Xu CY, Ren LQ (2020) Superhydrophobic copper surface textured by laser for delayed icing phenomenon. Langmuir 36(5):1075–1082. https://doi.org/10.1021/acs.langmuir.9b02273

    Article  CAS  Google Scholar 

  9. Tian XL, Verho T, Ras RHA (2016) Moving superhydrophobic surfaces toward real-world applications. Science 352(6282):142–143. https://doi.org/10.1126/science.aaf2073

    Article  CAS  Google Scholar 

  10. Milionis A, Loth E, Bayer IS (2016) Recent advances in the mechanical durability of superhydrophobic materials. Adv Coll Interface Sci 229:57–79. https://doi.org/10.1016/j.cis.2015.12.007

    Article  CAS  Google Scholar 

  11. Wang DH, Sun QQ, Hokkanen MJ, Zhang CL, Lin FY, Liu Q, Deng X (2020) Design of robust superhydrophobic surfaces. Nature 582(7810):55. https://doi.org/10.1038/s41586-020-2331-8

    Article  CAS  Google Scholar 

  12. Yue XF, Liu WD, Wang Y (2018) Freezing delay, frost accumulation and droplets condensation properties of micro- or hierarchically-structured silicon surfaces. Int J Heat Mass Transf 126:442–451. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.165

    Article  CAS  Google Scholar 

  13. Alizadeh A, Yamada M, Li R, Shang W, Otta S, Zhong S, Blohm ML (2012) Dynamics of ice nucleation on water repellent surfaces. Langmuir 28(6):3180–3186. https://doi.org/10.1021/la2045256

    Article  CAS  Google Scholar 

  14. Alamri S, Vercillo V, Aguilar-Morales AI, Schell F, Wetterwald M, Lasagni AF, Kunze T (2020) Self-limited ice formation and efficient de-Icing on superhydrophobic micro-structured airfoils through direct laser interference patterning. Adv Mater Interfaces 7(22):2001231. https://doi.org/10.1002/admi.202001231

    Article  Google Scholar 

  15. Pan R, Zhang HJ, Zhong ML (2021) Triple-scale superhydrophobic surface with excellent anti-Icing and icephobic performance via ultrafast laser hybrid fabrication. ACS Appl Mater Interfaces 13(1):1743–1753. https://doi.org/10.1021/acsami.0c16259

    Article  CAS  Google Scholar 

  16. Zhu TX, Cheng Y, Huang JY, Xiong JQ, Ge M, Mao JJ, Lai YK (2020) A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chem Eng J 399:125746. https://doi.org/10.1016/j.cej.2020.125746

    Article  CAS  Google Scholar 

  17. Wang ZL, Yang AB, Tan XY, Tu YT, Sabin S, Xiang P, Chen XB (2020) A veil-over-sprout micro-nano PMMA/SiO2 superhydrophobic coating with impressive abrasion, icing, and corrosion resistance. Colloids Surf Physicochem Eng Aspects 601:124998. https://doi.org/10.1016/j.colsurfa.2020.124998

    Article  CAS  Google Scholar 

  18. Maghsoudi K, Vazirinasab E, Momen G, Jafari R (2021) Icephobicity and durability assessment of superhydrophobic surfaces: the role of surface roughness and the ice adhesion measurement technique. J Mater Process Technol 288:116883. https://doi.org/10.1016/j.jmatprotec.2020.116883

    Article  CAS  Google Scholar 

  19. Liu R, Chi ZD, Cao L, Weng ZK, Wang L, Li L, Wang ZB (2020) Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment. Appl Surf Sci 534:147576. https://doi.org/10.1016/j.apsusc.2020.147576

    Article  CAS  Google Scholar 

  20. Zhao YZ, Su YL, Hou XY, Hong MH (2021) Directional sliding of water: biomimetic snake scale surfaces. Opto-Electron Adv 4(4):210008. https://doi.org/10.29026/oea.2021.210008

    Article  CAS  Google Scholar 

  21. Su YL, Zhao YZ, Jiang SY, Hou XY, Hong MH (2021) Anisotropic superhydrophobic properties of bioinspired surfaces by laser ablation of metal substrate inside water. Adv Mater Interfaces 8(16):2100555. https://doi.org/10.1002/admi.202100555

    Article  CAS  Google Scholar 

  22. Zhou R, Lin SD, Ding Y, Yang H, Keng KOY, Hong MH (2018) Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1(8):180014. https://doi.org/10.29026/oea.2018.180014

    Article  Google Scholar 

  23. Graus P, Moller TB, Leiderer P, Boneberg J, Polushkin NI (2020) Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism. Opto-Electron Adv 3(1):190027. https://doi.org/10.29026/oea.2020.190027

    Article  CAS  Google Scholar 

  24. Wang HP, He MJ, Liu H, Guan YC (2019) One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function. ACS Appl Mater Interfaces 11(28):25586–25594. https://doi.org/10.1021/acsami.9b06865

    Article  CAS  Google Scholar 

  25. Liu MY, Zhou R, Chen ZK, Yan HP, Cui JQ, Liu WS, Hong MH (2020) Tunable hierarchical nanostructures on micro-conical arrays of laser textured TC4 substrate by hydrothermal treatment for enhanced anti-Icing property. Coatings 10(5):450. https://doi.org/10.3390/coatings10050450

    Article  CAS  Google Scholar 

  26. Chernova OF, Vasyukov DD, Savinetsky AB (2016) Architectonics of the hair of sled dogs of Chukotka. Dokl Biol Sci 467(1):75–81. https://doi.org/10.1134/S0012496616020071

    Article  CAS  Google Scholar 

  27. Lin S (2018) Investigations of microstructures and mechanical behaviors of cuticle of lobster claw. Dissertation, Chongqing University

  28. Chaudhary G, Li R (2014) Freezing of water droplets on solid surfaces: an experimental and numerical study. Exp Thermal Fluid Sci 57:86–93. https://doi.org/10.1016/j.expthermflusci.2014.04.007

    Article  Google Scholar 

  29. Zhang DS, Sugioka K (2019) Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2(3):190002. https://doi.org/10.29026/oea.2019.190002

    Article  CAS  Google Scholar 

  30. Yang H, Guan XY, Pang GH, Zheng ZX, Li CB, Yang C, Wang M, Xu KC (2021) Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. Opt Express 29(11):16904–16913. https://doi.org/10.1364/OE.423789

    Article  CAS  Google Scholar 

  31. Yang H, Xu K, Xu C, Fan D, Cao Y, Xue W, Pang J (2019) Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency. Nanoscale Res Lett 14(1):1–10. https://doi.org/10.1186/s11671-019-3140-6

    Article  CAS  Google Scholar 

  32. Liu XQ, Bai BF, Chen QD, Sun HB (2019) Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2(9):190021. https://doi.org/10.29026/oea.2019.190021

    Article  CAS  Google Scholar 

  33. Pfleging W, Kumari R, Besser H, Scharnweber T, Majumdar JD (2015) Laser surface textured titanium alloy (Ti-6Al-4V): part 1-surface characterization. Appl Surf Sci 355:104–111. https://doi.org/10.1016/j.apsusc.2015.06.175

    Article  CAS  Google Scholar 

  34. Gao YB, Wu BX, Zhou Y, Tao S (2011) A two-step nanosecond laser surface texturing process with smooth surface finish. Appl Surf Sci 257(23):9960–9967. https://doi.org/10.1016/j.apsusc.2011.06.115

    Article  CAS  Google Scholar 

  35. Zhou Y, Chen LW, Du ZR, Cao Y, Li FP, Hong MH (2015) Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix. Opt Mater Express. https://doi.org/10.1364/ome.5.001606

    Article  Google Scholar 

  36. Soh JH, Wu MX, Gu GQ, Chen LW, Hong MH (2016) Temperature-controlled photonic nanojet via VO2 coating. Appl Opt 55(14):3751–3756. https://doi.org/10.1364/ao.55.003751

    Article  CAS  Google Scholar 

  37. Lin ZY, Hong MH (2021) Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci 122:9783514. https://doi.org/10.34133/2021/9783514

    Article  Google Scholar 

  38. Ma LW, Wang JK, Zhao FT, Wu DQ, Huan Y, Zhang DW, Fan Y (2019) Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications. Compos Sci Technol 181:107696. https://doi.org/10.1016/j.compscitech.2019.107696

    Article  CAS  Google Scholar 

  39. Nguyen VH, Nguyen BD, Pham HT, Lam SS, Vo DVN, Shokouhimehr M, Le QV (2021) Anti-icing performance on aluminum surfaces and proposed model for freezing time calculation. Sci Rep 11(1):3641. https://doi.org/10.1038/s41598-020-80886-x

    Article  CAS  Google Scholar 

  40. Wu XM, Xu WF, Wang WC, Tang LM (2005) Experimental study on super-cooled drop freezing on cold surfaces. J Eng Thermophys 26(1):104–106. https://doi.org/10.3321/j.issn:0253-231X.2005.01.029

    Article  Google Scholar 

  41. Liu ZL, Gou YJ, Wang JT, Cheng SY (2008) Frost formation on a super-hydrophobic surface under natural convection conditions. Int J Heat Mass Transf 51(25–26):5975–5982. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.026

    Article  Google Scholar 

  42. Shen YZ, Tao J, Tao HJ, Chen SL, Pan L, Wang T (2015) Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Langmuir 31(39):10799–10806. https://doi.org/10.1021/acs.langmuir.5b02946

    Article  CAS  Google Scholar 

  43. Li Q, Guo ZG (2018) Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. J Mater Chem A 6(28):13549–13581. https://doi.org/10.1039/c8ta03259a

    Article  CAS  Google Scholar 

  44. Gogolides E, Ellinas K, Tserepi A (2015) Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron Eng 132:135–155. https://doi.org/10.1016/j.mee.2014.10.002

    Article  CAS  Google Scholar 

  45. Jung S, Tiwari M, Doan N, Dimos P (2012) Mechanism of supercooled droplet freezing on surfaces. Nat Commun 3:615. https://doi.org/10.1038/ncomms1630

    Article  CAS  Google Scholar 

  46. Rahimi E, Rafsanjani-Abbasi A, Davoodi A, Kiani-Rashid A (2018) Shape evolution of water and saline droplets during icing/melting cycles on superhydrophobic surface. Surf Coat Technol 333:201–209. https://doi.org/10.1016/j.surfcoat.2017.10.083

    Article  CAS  Google Scholar 

  47. Fu L (2016) Mechanism research of ice adhesion on aero-engine rotating components. Dissertation, Shanghai Jiao Tong University

  48. Zheng HK, Chang SN, Zhao YY (2017) Anti-icing & icephobic mechanism and applications of superhydrophobic/ultra slippery surface. Progress Chem 29(1):102–118. https://doi.org/10.7536/pc161015

    Article  CAS  Google Scholar 

  49. Zhu XT, Zhang ZZ, Men XH, Yang J, Wang K, Xu XH, Xue QJ (2011) Robust superhydrophobic surfaces with mechanical durability and easy repairability. J Mater Chem 21(39):15793–15797. https://doi.org/10.1039/c1jm12513c

    Article  CAS  Google Scholar 

  50. Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23(5):673–678. https://doi.org/10.1002/adma.201003129

    Article  CAS  Google Scholar 

  51. Wang L, Yang JY, Zhu Y, Li ZH, Sheng T, Hu YM, Yang DQ (2016) A study of the mechanical and chemical durability of ultra-ever dry superhydrophobic coating on low carbon steel surface. Colloids Surf Physicochem Eng Aspects 497:16–27. https://doi.org/10.1016/j.colsurfa.2016.02.022

    Article  CAS  Google Scholar 

  52. Xin GQ, Wu CY, Cao HY, Liu WN, Li B, Huang Y, Zhang GJ (2020) Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance. Surf Coat Technol 391:125707. https://doi.org/10.1016/j.surfcoat.2020.125707

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by National Natural Science Foundation of China (No. 62175203), Fujian Provincial Science and Technology Programme (No. 2020H0006), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province Applied Research Project (No. RD2020050301), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhou, R., Yan, H. et al. Bioinspired robust top-perforated micro-conical array of TC4 surface fabricated by pulsed laser ablation for enhanced anti-icing property. J Mater Sci 57, 8890–8903 (2022). https://doi.org/10.1007/s10853-022-07194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07194-9

Navigation