Skip to main content
Log in

Epoxy/iron alginate composites with improved fire resistance, smoke suppression and mechanical properties

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A balance of sustainability and high fire resistance and smoke suppression is important for the preparation of epoxy resins (EPs). Herein, bio-based iron alginate was used to ameliorate the fire safety of EP matrix. The addition of iron alginate reduced the initial decomposition temperature and temperature at maximum weight-loss rate of EP matrix, whereas obviously improved the char residues at the higher temperature zones. The peak heat release rate, smoke production rate and total smoke production were dramatically decreased by 61.3%, 60.4% and 42.2%, respectively, compared with those of EP matrix. And the presence of iron alginate obtained obviously smoke-suppressant effect on EP/iron alginate composites. Furthermore, the incorporation of iron alginate had no seriously destructive effect on the mechanical properties of EP matrix, while EP/iron alginate-3 exhibited a 13.5% improvement in the impact strength, compared with that of EP matrix. Such desirable features including higher fire resistance and proper smoke suppression make iron alginate a significant strategy for producing fire-safety EP compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 2
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cheng Z, Fang M, Chen X, Zhang Y, Wang Y, Li H, Qian J (2020) Thermal stability and flame retardancy of a cured trifunctional epoxy resin with the synergistic effects of silicon/titanium. ACS Omega 5:4200–4212. https://doi.org/10.1021/acsomega.9b04050

    Article  CAS  Google Scholar 

  2. Huang Y, Ma T, Wang Q, Guo C (2019) Synthesis of biobased flame-retardant carboxylic acid curing agent and application in wood surface coating. ACS Sustain Chem Eng 7:14727–14738. https://doi.org/10.1021/acssuschemeng.9b02645

    Article  CAS  Google Scholar 

  3. Zhang J, Li Z, Zhang L, Yang Y, Wang D-Y (2019) Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustain Chem Eng 8:994–1003. https://doi.org/10.1021/acssuschemeng.9b05658

    Article  CAS  Google Scholar 

  4. Zhao B, Liu P-W, Xiong K-K, Liu H-H, Zhao P-H, Liu Y-Q (2019) Impacts of multi-element flame retardants on flame retardancy, thermal stability, and pyrolysis behavior of epoxy resin. Polym Degrad Stab 167:217–227. https://doi.org/10.1016/j.polymdegradstab.2019.07.004

    Article  CAS  Google Scholar 

  5. Xu Y, Liu L, Yan C, Hong Y, Xu M, Qian L, Li B (2021) Eco-friendly phosphonic acid piperazine salt toward high-efficiency smoke suppression and flame retardancy for epoxy resins. J Mater Sci 56:16999–17010. https://doi.org/10.1007/s10853-021-06384-1

    Article  CAS  Google Scholar 

  6. Zhu Z, Lin P, Wang H, Wang L, Yu B, Yang F (2020) A facile one-step synthesis of highly efficient melamine salt reactive flame retardant for epoxy resin. J Mater Sci 55:12836–12847. https://doi.org/10.1007/s10853-020-04935-6

    Article  CAS  Google Scholar 

  7. Kausar A, Rafique I, Anwar Z, Muhammad B (2016) Recent developments in different types of flame retardants and effect on fire retardancy of epoxy composite. Polym-Plast Technol Eng 55:1512–1535. https://doi.org/10.1080/03602559.2016.1163607

    Article  CAS  Google Scholar 

  8. Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2018) Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review. Ind Eng Chem Res 57:2711–2726. https://doi.org/10.1021/acs.iecr.7b04495

    Article  CAS  Google Scholar 

  9. Yang S, Huo S-Q, Wang J, Zhang B, Wang J-S, Ran S-Y, Fang Z-P, Song P-G, Wang H (2021) A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate. Compos Part B-Eng 207:108601. https://doi.org/10.1016/j.compositesb.2020.108601

    Article  CAS  Google Scholar 

  10. Xu M-J, Xia S-Y, Liu C, Li B (2018) Preparation of poly(phosphoric acid piperazine) and its application as an effective flame retardant for epoxy resin. Chinese J Polym Sci 36:655–664. https://doi.org/10.1007/s10118-018-2036-8

    Article  CAS  Google Scholar 

  11. Wang B, Xu Y-J, Li P, Zhang FQ, LiuZhu YP (2020) Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly. Appl Surf Sci 509:145323. https://doi.org/10.1016/j.apsusc.2020.145323

    Article  CAS  Google Scholar 

  12. Niu H, Nabipour H, Wang X, Song L, Hu Y (2021) Phosphorus-free vanillin-derived intrinsically flame-retardant epoxy thermoset with extremely low heat release rate and smoke emission. ACS Sustain Chem Eng 9:5268–5277. https://doi.org/10.1021/acssuschemeng.0c08302

    Article  CAS  Google Scholar 

  13. Zhang X-H, Wan H-M, Min Y-Q, Fang Z, Qi G-R (2005) Synthesis and thermal properties of a novel nitrogen-containing epoxy resin. Chinese Chem Lett 16:547–550

    CAS  Google Scholar 

  14. Luo Y, Xie Y, Chen R, Zheng R, Wu H, Sheng X, Xie D, Mei Y (2021) A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy. Front Chem Sci Eng 15:1332–1345. https://doi.org/10.1007/s11705-021-2035-0

    Article  CAS  Google Scholar 

  15. Guo W, Nie S, Kalali EN, Wang X, Wang W, Cai W, Song L, Hu Y (2019) Construction of SiO2@UiO-66 core–shell microarchitectures through covalent linkage as flame retardant and smoke suppressant for epoxy resins. Compos Part B-Eng 176:107261. https://doi.org/10.1016/j.compositesb.2019.107261

    Article  CAS  Google Scholar 

  16. Wei Z, Liu W, Li H, Ma S, Yan Z (2012) Properties of phosphorus-containing organic silicon/epoxy hybrid resin. Acta Polym Sin 148:148–153. https://doi.org/10.3724/sp.J.1105.2012.11107

    Article  Google Scholar 

  17. Long JW, Shi XH, Liu BW, Lu P, Chen L, Wang Y-Z (2020) Semi-aromatic polyamides containing siloxane unit toward high performance. Acta Polym Sin 51:681–686. https://doi.org/10.11777/j.issn1000-3304.2020.20125

    Article  CAS  Google Scholar 

  18. Dai P, Liang M, Ma X et al (2020) Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin. ACS Omega 5:32084–32093. https://doi.org/10.1021/acsomega.0c05146

    Article  CAS  Google Scholar 

  19. Xiong ZQ, Zhang Y, Du XY, Song PA, Fang ZP (2019) Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustain Chem Eng 7:8954–8963. https://doi.org/10.1021/acssuschemeng.9b01016

    Article  CAS  Google Scholar 

  20. Qi Y, Weng Z, Kou Y, Song L, Li J, Wang J, Zhang S, Liu C, Jian X (2021) Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem Eng J 406:126881. https://doi.org/10.1016/j.cej.2020.126881

    Article  CAS  Google Scholar 

  21. Li P, Wang B, Xu YJ, Jiang Z, Dong C, Liu Y, Zhu P (2019) Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sustain Chem Eng 7:19246–19256. https://doi.org/10.1021/acssuschemeng.9b05523

    Article  CAS  Google Scholar 

  22. Zheng C, Sun Y, Cui Y, Yang W, Lu Z, Shen S, Xia Y, Xiong Z (2021) Superhydrophobic and flame-retardant alginate fabrics prepared through a one-step dip-coating surface-treatment. Cellulose 28:5973–5984. https://doi.org/10.1007/s10570-021-03890-y

    Article  CAS  Google Scholar 

  23. Zhang Y, Jing J, Liu T, Xi L-D, Sai T, Ran S-Y, Fang Z-P, Huo S-Q, Song P-G (2021) A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid). Chem Eng J 411:128493. https://doi.org/10.1016/j.cej.2021.128493

    Article  CAS  Google Scholar 

  24. Zhang Y, Xiong Z, Ge H, Ni L-D, Zhang T, Huo S-Q, Song P-G, Fang Z-P (2020) Core-shell bioderived flame retardants based on chitosan/alginate coated ammonia polyphosphate for enhancing flame retardancy of polylactic acid. ACS Sustain Chem Eng 8:6402–6412. https://doi.org/10.1021/acssuschemeng.0c00634

    Article  CAS  Google Scholar 

  25. Pan H, Ma W, Zhang Z, Liu Y, Lu F, Yu B, Zhang X (2020) Co-effect flame retardation of Co3O4-loaded titania nanotubes and alpha-zirconium phosphate in the epoxy matrix. ACS Omega 5:28475–28482. https://doi.org/10.1021/acsomega.0c02584

    Article  CAS  Google Scholar 

  26. Xu D-H, Wang S-J, Hu J-W, Liu Y, Jiang Z-M, Zhu P (2021) Enhancing antibacterial and flame-retardant performance of cotton fabric with an iminodiacetic acid-containing N-halamine. Cellulose 28:3265–3277. https://doi.org/10.1007/s10570-021-03716-x

    Article  CAS  Google Scholar 

  27. Li Z, Liu Z-Q, Dufosse F, Yan LK, Wang D-Y (2018) Interfacial engineering of layered double hydroxide toward epoxy resin with improved fire safety and mechanical property. Compos Part B-Eng 152:336–346. https://doi.org/10.1016/j.compositesb.2018.08.094

    Article  CAS  Google Scholar 

  28. Li Z, Zhang J, Dufosse F, Wang D-Y (2018) Ultrafine nickel nanocatalyst-engineering of an organic layered double hydroxide towards a super-efficient fire-safe epoxy resin via interfacial catalysis. J Mater Chem A 6:8488–8498. https://doi.org/10.1039/c8ta00910d

    Article  CAS  Google Scholar 

  29. Karami Z, Jouyandeh M, Hamad SM, Ganjali MR, Aghazadeh M, Torre L, Puglia D, Saeb MR (2019) Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Prog Org Coat 136:105278. https://doi.org/10.1016/j.porgcoat.2019.105278

    Article  CAS  Google Scholar 

  30. Ding J-M, Zhang Y, Zhang X, Kong Q-H, Zhang J-H, Liu H, Zhang F (2020) Improving the flame-retardant efficiency of layered double hydroxide with disodium phenylphosphate for epoxy resin. J Therm Anal Calorim 140:149–156. https://doi.org/10.1007/s10973-019-08372-9

    Article  CAS  Google Scholar 

  31. Jiang S-D, Bai Z-M, Tang G, Song L, Stec AA, Hull TR, Hu Y, Hu W-Z (2014) Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl Mater Interfaces 6:14076–14086. https://doi.org/10.1021/am503412y

    Article  CAS  Google Scholar 

  32. Liao D-J, Xu Q-K, McCabe RW, Babu HV, Hu X-P, Pan N, Wang D-Y, Hull TR (2017) Ferrocene-based nonphosphorus copolymer: synthesis, high-charring mechanism, and its application in fire retardant epoxy resin. Ind Eng Chem Res 56:12630–12643. https://doi.org/10.1021/acs.iecr.7b02980

    Article  CAS  Google Scholar 

  33. Li Z, Wang D-Y (2017) Nano-architectured mesoporous silica decorated with ultrafine Co3O4 toward an efficient way to delaying ignition and improving fire retardancy of polystyrene. Mater Design 129:69–81. https://doi.org/10.1016/j.matdes.2017.05.021

    Article  CAS  Google Scholar 

  34. Wang X, Zhou S, Xing W, Yu B, Feng X, Song L, Hu Y (2013) Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J Mater Chem A 1:4383–4390. https://doi.org/10.1039/c3ta00035d

    Article  CAS  Google Scholar 

  35. Li Z, SI Montero Lira SI, Zhang L, Expósito DF, Heeralal VB, Wang D-Y (2018) Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin. Polym Degrad Stabil 157:119–130. https://doi.org/10.1016/j.polymdegradstab.2018.10.005

    Article  CAS  Google Scholar 

  36. Xu Y-J, Qu L-Y, Liu Y, Zhu P (2021) An overview of alginates as flame-retardant materials: pyrolysis behaviors, flame retardancy, and applications. Carbohyd Polym 260:117827. https://doi.org/10.1016/j.carbpol.2021.117827

    Article  CAS  Google Scholar 

  37. Liu Y, Zhao J-C, Zhang C-J, Guo Y, Zhu P, Wang D-Y (2015) Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films. J Mater Sci 51:1052–1065. https://doi.org/10.1007/s10853-015-9435-9

    Article  CAS  Google Scholar 

  38. Zhang J, Ji Q, Wang F, Tan L, Xia Y (2012) Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polym Degrad Stab 97:1034–1040. https://doi.org/10.1016/j.polymdegradstab.2012.03.004

    Article  CAS  Google Scholar 

  39. Huang J-F, Li Y-T, Wu J-H, Dong XM, Cao PY, Liu YL, Lin ZT, Jing GB (2016) Facile preparation of amorphous iron nanoparticles filled alginate matrix composites with high stability. Compos Sci Technol 134:168–174. https://doi.org/10.1016/j.compscitech.2016.08.018

    Article  CAS  Google Scholar 

  40. Wang B, Li P, Xu Y-J, Jiang ZM, Dong CH, Liu Y, Zhu P (2020) Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: Thermal degradation properties, flammability and flame-retardant mechanism. Compos Part B-Eng 194:108038. https://doi.org/10.1016/j.compositesb.2020.108038

    Article  CAS  Google Scholar 

  41. Li P, Wang Q-Z, Wang B, Liu Y-Y, Xu Y-J, Liu Y, Zhu P (2021) Blending alginate fibers with polyester fibers for flame-retardant filling materials: thermal decomposition behaviors and fire performance. Polym Degrad Stab 183:109470. https://doi.org/10.1016/j.polymdegradstab.2020.109470

    Article  CAS  Google Scholar 

  42. Zhang X-S, Xia Y-Z, Shi M-W, Yan X (2018) The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter. Chinese Chem Lett 29:489–492. https://doi.org/10.1016/j.cclet.2017.07.023

    Article  CAS  Google Scholar 

  43. Liu Y, Wang JS, Zhu P, Zhao JC, Zhang CJ, Guo Y, Cui L (2016) Thermal degradation properties of biobased iron alginate film. J Anal Appl Pyrolysis 119:87–96. https://doi.org/10.1016/j.jaap.2016.03.014

    Article  CAS  Google Scholar 

  44. Wang HZ, Guo WQ, Yin RL, Du JS, Wu QL, Luo HC, Liu BH, Sseguya F, Ren NQ (2019) Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways. Chem Eng J 362:561–569. https://doi.org/10.1016/j.cej.2019.01.053

    Article  CAS  Google Scholar 

  45. Marinović-Cincović M, Popović MČ, Novaković MM, Nedeljković JM (2007) The influence of β-FeOOH nanorods on the thermal stability of poly(methyl methacrylate). Polym Degrad Stabil 92:70–74. https://doi.org/10.1016/j.polymdegradstab.2006.09.012

    Article  CAS  Google Scholar 

  46. Li Z, Liu Z, Zhang J, Fu C, Wagenknecht U, Wang D-Y (2019) Bio-based layered double hydroxide nanocarrier toward fire-retardant epoxy resin with efficiently improved smoke suppression. Chem Eng J 378:122046. https://doi.org/10.1016/j.cej.2019.122046

    Article  CAS  Google Scholar 

  47. Sacristan M, Hull TR, Stec AA, Ronda JC, Galia M, Cadiz V (2010) Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches. Polym Degrad Stabil 95:1269–1274. https://doi.org/10.1016/j.polymdegradstab.2010.03.015

    Article  CAS  Google Scholar 

  48. Zhu M, Liu L, Wang Z (2020) Iron-phosphorus-nitrogen functionalized reduced graphene oxide for epoxy resin with reduced fire hazards and improved impact toughness. Compos Part B-Eng 199:108283. https://doi.org/10.1016/j.compositesb.2020.108283

    Article  CAS  Google Scholar 

  49. Gao N, Li A, Quan C, Du L, Duan Y (2013) TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrolysis 100:26–32. https://doi.org/10.1016/j.jaap.2012.11.009

    Article  CAS  Google Scholar 

  50. Liu Y, Wang Q-Q, Jiang Z-M, Zhang CJ, Li ZF, Chen HQ, Zhu P (2018) Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J Anal Appl Pyrolysis 135:289–298. https://doi.org/10.1016/j.jaap.2018.08.024

    Article  CAS  Google Scholar 

  51. Zhang Z, Qin J, Zhang W, Pan Y-T, Wang D-Y, Yang R (2020) Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem Eng J 381:122777. https://doi.org/10.1016/j.cej.2019.122777

    Article  CAS  Google Scholar 

  52. Xu W, Chen R, Xu J, Zhong D, Cheng Z (2020) Nickel hydroxide and zinc hydroxystannate dual modified graphite carbon nitride for the flame retardancy and smoke suppression of epoxy resin. Polym Degrad Stab 182:109366. https://doi.org/10.1016/j.polymdegradstab.2020.109366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 51973098 and 51991350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Liu or Yu-Zhong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, P., Xu, YJ. et al. Epoxy/iron alginate composites with improved fire resistance, smoke suppression and mechanical properties. J Mater Sci 57, 2567–2583 (2022). https://doi.org/10.1007/s10853-021-06671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06671-x

Navigation