Skip to main content
Log in

Preparation of Poly(phosphoric acid piperazine) and Its Application as an Effective Flame Retardant for Epoxy Resin

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A phosphorus-nitrogen containing flame retardant additive of polyphosphoric acid piperazine, defined as PPAP, was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid, and the dehydration polymerization under heating in nitrogen atmosphere. Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 13C and 31P solid-state nuclear magnetic resonance measurements. The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets. The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI), vertical burning (UL-94), thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests. The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets. The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability. Meanwhile, the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect, which led to a higher char yield at high temperature. The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient, more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion. The formed char layer with high quality effectively prevented the heat transmission and diffusion, limited the production of combustible gases, and inhibited the emission of smoke, leading to the reduction of heat and smoke release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.; Song, L.; Xing, W. Y.; Lu, H. D.; Hu, Y. An effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate). Mater. Chem. Phys. 2011, 125(3), 536–541.

    Article  CAS  Google Scholar 

  2. Chen, Z. K.; Yang, G.; Yang, J. P.; Fu, S. Y.; Ye, L.; Huang, Y. G. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether. Polymer 2009, 50(5), 1316–1323.

    Article  CAS  Google Scholar 

  3. Toldy, A.; Szabó, A.; Novák, C.; Madarász, J.; Tóth, A.; Marosi, G. MarosiIntrinsically flame retardant epoxy resin-fire performance and background-Part II. Polym. Degrad. Stab. 2008, 93(11), 2007–2013.

    Article  CAS  Google Scholar 

  4. Gao, M.; Wu, W. H.; Xu, Z. Q. Thermal degradation behaviors and flame retardancy of epoxy resins with novel silicon-containing flame retardant. J. Appl. Polym. Sci. 2013, 127(3), 1842–1847.

    Article  CAS  Google Scholar 

  5. Kandola, B. K.; Biswas, B.; Price, D.; Horrocks, A. R. Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin. Polym. Degrad. Stab. 2010, 95(2), 144–153.

    Article  CAS  Google Scholar 

  6. Levchik, S. V.; Weil, E. D. A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 2006, 24(5), 345–364.

    Article  CAS  Google Scholar 

  7. Lin, H. T.; Lin, C. H.; Hu, Y. M.; Su, W. C. An approach to develop high-T g epoxy resins for halogen-freecopper clad laminates. Polymer 2009, 50(24), 5685–5692.

    Article  CAS  Google Scholar 

  8. Braun, U.; Balabanovich, A. I.; Schartel, B.; Knoll, U.; Artner, J.; Ciesielski, M.; Hoffmann, T. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 2006, 47, 8495–8508.

    Article  CAS  Google Scholar 

  9. Ren, H.; Sun, J. Z.; Wu, B. J.; Zhou, Q. Y. Synthesis and properties of a phosphorus-containing flame retardant epoxy resin based on bis-phenoxy(3-hydroxy) phenyl phosphine oxide. Polym. Degrad. Stab. 2007, 92(6), 956–961.

    Article  CAS  Google Scholar 

  10. Li, Y.; Zheng, H. B.; Xu, M. J.; Li, B.; Lai, T. Synthesis of a novel phosphonate flame retardant and its application in epoxy resins. J. Appl. Polym. Sci. 2015, 132(45), 13085–13094.

    Article  Google Scholar 

  11. Xu, M. J.; Xu, G. R.; Leng, Y.; Li, B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym. Degrad. Stab. 2016, 123, 105–114.

    Article  CAS  Google Scholar 

  12. Xu, M. J.; Zhao, W.; Li, B. Synthesis of a novel curing agent containing organophosphorus and its application in flame-retarded epoxy resins. J. Appl. Polym. Sci. 2014, 131(23), 12406–12417.

    Article  Google Scholar 

  13. Martin, C.; Lligadas, G.; Ronda, J. C.; Galia, M.; Cadiz, V. Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products. J. Polym. Sci., Part A: Polym. Chem. 2006, 44(21), 6332–6344.

    Article  CAS  Google Scholar 

  14. Dogan, M.; Unlu, S. M. Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym. Degrad. Stab. 2014, 99, 12–17.

    Article  CAS  Google Scholar 

  15. Zhang, T.; Liu, W.; Wang, M.; Liu, P.; Pan, Y.; Liu, D. Synthesis of a boron/nitrogen-containing compound based on triazine and boronic acid and its flame retardant effect on epoxy resin. High. Perform. Polym. 2016, DOI: 10.1177/0954008316650929.

    Google Scholar 

  16. Unlu, S. M.; Dogan, S. D.; Dogan, M. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polym. Adv. Technol. 2014, 25(8), 769–776.

    Article  CAS  Google Scholar 

  17. Canadell, J.; Mantecon, A.; Cadiz, V. Copolymerization of a silicon-containing spiroorthoester with a phosphorus-containing diglycidyl compound: influence on flame retardancy and shrinkage. Polym. Degrad. Stab. 2007, 92(10), 1934–1941.

    Article  CAS  Google Scholar 

  18. Mercado, L. A.; Galia, M.; Reina, J. A. Silicon-containing flame retardant epoxy resins: synthesis, characterization and properties. Polym. Degrad. Stab. 2006, 91(11), 2588–2594.

    Article  CAS  Google Scholar 

  19. Song, S.; Ma, J.; Cao, K.; Chang, G.; Huang, Y.; Yang, J. Synthesis of a novel dicyclic silicon-/phosphorus hybrid and its performance on flame retardancy of epoxy resin. Polym. Degrad. Stab. 2014, 99, 43–52.

    Article  CAS  Google Scholar 

  20. Qian, X.; Song, L.; Bihe, Y.; Yu, B.; Shi, Y.; Hu, Y.; Yuen, R. K. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater. Chem. Phys. 2014, 143(3), 1243–1252.

    Article  CAS  Google Scholar 

  21. Wang, S.; Xin, F.; Chen, Y.; Qian, L.; Chen, Y. Phosphorus-nitrogen containing polymer wrapped carbon nanotubes and their flame-retardant effect on epoxy resin. Polym. Degrad. Stab. 2016, 129, 133–141.

    Article  CAS  Google Scholar 

  22. Zhang, X. H.; Liu, F.; Chen, S.; Qi, G. R. Novel flame retardant thermosets from nitrogen-containing and phosphoruscontaining epoxy resins cured with dicyandiamide. J. Appl. Polym. Sci. 2007, 106(4), 2391–2397.

    Article  CAS  Google Scholar 

  23. Gu, L.; Chen, G.; Yao, Y. Two novel phosphorus-nitrogencontaining halogen-free flame retardants of high performance for epoxy resin. Polym. Degrad. Stab. 2014, 108, 68–75.

    Article  CAS  Google Scholar 

  24. Artner, J.; Ciesielski, M.; Walter, O.; Doring, M.; Perez, R. M.; Sandler, J. K. W.; Altstadt, V.; Schartel, B. A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems. Macromol. Mater. Eng. 2008, 293(6), 503–514.

    Article  CAS  Google Scholar 

  25. Alcon, M. J.; Ribera, G.; Galia, M.; Cadiz, V. Advanced flame retardant epoxy resins from phosphorus-containing diol. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3510–3515.

    Article  CAS  Google Scholar 

  26. Lu, S. Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002, 27, 1661–1712.

    Article  CAS  Google Scholar 

  27. Duquesne, S.; Lefebvre, J.; Seeley, G.; Camino, G.; Delobel, R.; Lebras, M. Vinyl acetate/butyl acrylate copolymers: Part 2: fire retardancy using phosphorus-containing additives and monomers. Polym. Degrad. Stab. 2004, 85(2), 883–892.

    Article  CAS  Google Scholar 

  28. Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol. Mater. Eng. 2011, 296, 14–30.

    Article  CAS  Google Scholar 

  29. Yang, S.; Wang, J.; Huo, S.; Wang, M.; Tang, Y. Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin. Polym. Degrad. Stab. 2016, 126, 9–16.

    Article  CAS  Google Scholar 

  30. Yang, S.; Wang, J.; Huo, S.; Wang, M. Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym. Degrad. Stab. 2015, 121, 398–406.

    Article  CAS  Google Scholar 

  31. Gao, M.; Yang, S. S. A novel intumescent flame-retardant epoxy resins system. J. Appl. Polym. Sci. 2010, 113(4), 2346–2351.

    Article  Google Scholar 

  32. Xu, M. J.; Ma, Y.; Hou, M. J.; Li, B. Synthesis of a cross-linked triazine phosphine polymer and its effect on fire retardancy, thermal degradation and moisture resistance of epoxy resins. Polym. Degrad. Stab. 2015, 119, 14–22.

    Article  CAS  Google Scholar 

  33. Yang, K.; Xu,, M. J.; Li, B. Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 2013, 98(7), 1397–1406.

    Article  CAS  Google Scholar 

  34. Tan, Y.; Shao, Z. B.; Yu, L. X.; Long, J. W.; Qi, M.; Chen, L.; Wang, Y. Z. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polym. Chem. 2016, 7(17), 3003–3012.

    Article  CAS  Google Scholar 

  35. Nguyen, T. M.; Chang, S. C.; Condon, B.; Thomas, T. P.; Azadi, P. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant. J. Anal. Appl. Pyrolysis. 2014, 110, 122–129.

    Article  CAS  Google Scholar 

  36. Gao, M.; Wo, Y. Q.; Wu, W. H. Microencapsulation of intumescent flame-retardant agent and application to epoxy resins. J. Appl. Polym. Sci. 2011, 119, 2025–2030.

    Article  CAS  Google Scholar 

  37. Gao, L. P.; Wang, D. Y.; Wang, Y. Z. A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym. Degrad. Stab. 2008, 93(7), 1308–1315.

    Article  CAS  Google Scholar 

  38. Zhang, W.; Li, X.; Yang, R. J. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym. Degrad. Stab. 2011, 96(10), 1821–1832.

    Article  CAS  Google Scholar 

  39. Yang, S.; Wang, J.; Huo, S. Q.; Wang, M.; Zhang, B. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: strong bonding of different carbon residues. Polym. Degrad. Stab. 2016, 128, 89–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2572014EB06-02), the National Natural Science Foundation of China (No. 51673035) and Heilongjiang Major Research Projects (No. GA15A101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, MJ., Xia, SY., Liu, C. et al. Preparation of Poly(phosphoric acid piperazine) and Its Application as an Effective Flame Retardant for Epoxy Resin. Chin J Polym Sci 36, 655–664 (2018). https://doi.org/10.1007/s10118-018-2036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2036-8

Keywords

Navigation