Skip to main content
Log in

Phytic acid-doped poly(aniline-co-pyrrole) copolymers for supercapacitor electrodes applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phytic acid-doped copolymers poly(aniline-co-pyrrole) have been synthesized by chemical polymerization for applications of supercapacitors. The results indicate that poly(aniline-co-pyrrole) copolymer delivered a high specific capacitance (639 F g−1) and 62.3% capacitance retention after 1000 cycles at 3 A g−1 in 1 M H2SO4. The good cycle stability was due to increased structural stability by the formation of cross-link between poly(aniline-co-pyrrole) backbones doped by phytic acid. The high capacitance may result from the formation of large specific surface area and effective conducting paths in the copolymer. A symmetrical supercapacitor device based on this copolymer was designed and provided a high energy density (12.2 Wh kg−1 at the power density of 500 W kg−1). Such results indicate that poly(aniline-co-pyrrole) might be a feasible candidate for electrocapacitive material of supercapacitors and this strategy can be extended to fabricate other conducting polymers for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.Q. Wang, Y. Ding, X.L. Guo, G.H. Yu, Nano Res. 12, 9 (2019)

    Google Scholar 

  2. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 2 (2012)

    Google Scholar 

  3. D. Potphode, L. Sinha, P.M. Shirage, Appl. Surf. Sci. 469, 162 (2019)

    CAS  Google Scholar 

  4. M. Iniya Pratheepa, M. Lawrenc, Vacuum 162, 208 (2019)

    Google Scholar 

  5. H. Hosseini, M. Teymouri, S. Saboor, A. Khalili, V. Goodarzi, Eur. Polym. J. 115, 335 (2019)

    CAS  Google Scholar 

  6. M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, N.Q. Wu, Nanoscale 5, 72 (2013)

    CAS  Google Scholar 

  7. W. Chen, R.B. Rakhi, H.N. Alshareef, J. Phys. Chem. C 117, 15009 (2013)

    CAS  Google Scholar 

  8. M. Sawangphruk, T. Kaewsongpol, Mater. Lett. 87, 1 (2012)

    Google Scholar 

  9. G.A. Snook, G.J. Wilson, A.G. Pandolfo, J. Power Sources 186, 1 (2009)

    Google Scholar 

  10. R. Ramya, R. Sivasubramanian, M.V. Sangaranarayanan, Electrochim. Acta 101, 7 (2013)

    Google Scholar 

  11. W. Wang, Q. Zhang, J. Li, X. Liu, L. Wang, J. Zhu, W. Luo, W. Jiang, RSC Adv. 5, 12 (2015)

    Google Scholar 

  12. Y. Huang, H.F. Li, Z.F. Wang, M.S. Zhu, Z.X. Pei, Q. Xue, Y. Huang, C.Y. Zhi, Nano Energy 22, 422 (2016)

    CAS  Google Scholar 

  13. Z.T. Zhang, M. Liao, H.Q. Lou, Y.J. Hu, X.M. Sun, H.S. Peng, Adv. Mater. 30, 170426 (2018)

    Google Scholar 

  14. L.J. Fu, Q.T. Qu, R. Holze, V. Kondratiev, Y.P. Wu, J. Mater. Chem. A 7, 25 (2019)

    Google Scholar 

  15. S.X. Zhou, X.Y. Tao, J. Ma, L.T. Guo, Y.B. Zhu, H.L. Fan, Z.S. Liu, X.Y. Wei, Vacuum 149, 175–179 (2018)

    CAS  Google Scholar 

  16. B. Liang, Z. Qin, J. Zhao, Y. Zhang, Z. Zhou, Y. Lu, J. Mater. Chem. A 2, 7 (2014)

    Google Scholar 

  17. H.H. Wu, C.W. Chang, D.L. Lu, K. Maeda, ACS Appl. Mater. Interfaces 11, 29 (2019)

    Google Scholar 

  18. M. Rajesh, C.J. Raj, B.C. Kim, B.B. Cho, J.M. Ko, K.H. Yu, Electrochim. Acta 220, 373 (2016)

    CAS  Google Scholar 

  19. S.J. Im, H.J. Kim, K. Shin, J. Korean Phys. Soc. 74, 2 (2019)

    Google Scholar 

  20. L.J. Pan, G.H. Yu, D.Y. Zhai, H.R. Lee, W.T. Zhao, N. Liu, Proc. Natl. Acad. Sci. 109, 9287 (2012)

    CAS  Google Scholar 

  21. H.J. Kim, S. Im, J.C. Kim, W.G. Hong, K. Shin, A.C.S. Sustain, Chem. Eng. 5, 6654 (2017)

    CAS  Google Scholar 

  22. Y. Gawli, A. Banerjee, D. Dhakras, M. Deo, D. Bulani, Sci. Rep. 6, 21002 (2016)

    CAS  Google Scholar 

  23. P. Liu, Q. Ru, P.M. Zheng, Z.L. Shi, Y. Liu, Chem. Eng. J. 374, 29 (2019)

    CAS  Google Scholar 

  24. V. Sharma, A. Sahoo, Y. Sharma, P. Mohanty, RSC Adv. 5, 45749 (2015)

    CAS  Google Scholar 

  25. V. Sharma, S. Khilari, D. Pradhan, P. Mohanty, RSC Adv. 6, 56421 (2016)

    CAS  Google Scholar 

  26. W. Wang, F.H. Zhu, Y.T. Dai, H. Zhang, J.H. Lei, Int. J. Electrochem. Sci. 11, 4000 (2016)

    CAS  Google Scholar 

  27. S. Dhibar, P. Bhattacharya, G. Hatui, C.K. Das, J. Alloys Compd. 625, 64 (2015)

    CAS  Google Scholar 

  28. S.X. Zhou, X.Y. Tao, J. Ma, C.H. Qu, Y. Zhou, L.T. Guo, Vacuum 143, 63 (2017)

    CAS  Google Scholar 

  29. P.B. Liu, J. Yan, Z.X. Guang, Y. Huang, X.F. Li, W.H. Huang, J. Power Sources 424, 108 (2019)

    CAS  Google Scholar 

  30. J.W. Ji, R. Li, H.Y. Li, Y. Shu, Y. Li, S.Q. Qiu, C.G. He, Y.K. Yang, Composites B 155, 132 (2018)

    CAS  Google Scholar 

  31. F. Barzegar, A. Bello, O.O. Fashedemi, J.K. Dangbegnon, D.Y. Momodu, F. Taghizadeh, Electrochim. Acta 180, 442 (2015)

    CAS  Google Scholar 

  32. L. Mai, X. Xu, C. Han, Y. Luo, L. Xu, Y.A. Wu, Y. Zhao, Nano Lett. 11, 11 (2011)

    Google Scholar 

  33. C. Wang, Z. Ying, S. Li, W. Peng, Z. Xu, J. Qiu, J. Power Sources 239, 10 (2013)

    Google Scholar 

  34. C.Q. Zhou, J. Han, G.P. Song, R. Guo, J. Polym. Sci. Pol. Chem. 46, 3563 (2008)

    CAS  Google Scholar 

  35. S. Banerjee, A. Kumar, J. Appl. Phys. 109, 11 (2011)

    Google Scholar 

  36. V. Lim, E. Kang, K. Neoh, Z. Ma, K. Tan, Appl. Surf. Sci. 181, 317 (2001)

    CAS  Google Scholar 

  37. J. Stejskal, M. Trchov, I. Ananievab, J. Jan, J. Proke, S. Fedorovae, I. Sapurinae, Synth. Met. 146, 29 (2004)

    CAS  Google Scholar 

  38. X.H. Li, X.G. Zhang, H.L. Li, J. Appl. Polym. Sci. 81, 3002 (2001)

    CAS  Google Scholar 

  39. X.H. Ou, X.C. Xu, RSC Adv. 6, 13780 (2016)

    CAS  Google Scholar 

  40. R. Kandulna, R.B. Choudhary, R. Singh, J. Inorg. Organomet. Polym. Mater. 29, 730 (2019)

    CAS  Google Scholar 

  41. W.B. Xu, B. Mu, W.B. Zhang, A. Wang, RSC Adv. 6, 68302 (2016)

    CAS  Google Scholar 

  42. R. Yao, Z.J. Yao, J.T. Zhou, Mater. Lett. 198, 206 (2017)

    CAS  Google Scholar 

  43. D.S. Patil, J.S. Shaikh, S.A. Pawar, R.S. Devan, Y.R. Ma, A.V. Moholkar, J.H. Kim, R.S. Kalubarme, C.J. Park, P.S. Patil, Phys. Chem. Chem. Phys. 14, 11886 (2012)

    CAS  Google Scholar 

  44. S.C. Wang, F.W. Liu, C.M. Gao, T. Wan, L.H. Wang, L. Wang, L. Wang, Chem. Eng. J. 370, 322 (2019)

    CAS  Google Scholar 

  45. L. Bromberg, D. Ying, H. Wu, S.A. Speakman, T.A. Hatton, Chem. Mater. 24, 9 (2012)

    Google Scholar 

Download references

Acknowledgements

This research was supported by “the Fundamental Research Funds for the Central Universities” (Grant 2019XKQYMS03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Yu Tao or Li-Tong Guo.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, WB., Guo, L. et al. Phytic acid-doped poly(aniline-co-pyrrole) copolymers for supercapacitor electrodes applications. J Mater Sci: Mater Electron 31, 6263–6273 (2020). https://doi.org/10.1007/s10854-020-03181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03181-5

Navigation