Skip to main content
Log in

3D characterization of microstructural evolution and variant selection in additively manufactured Ti-6Al-4 V

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ti-6Al-4 V is a popular alloy in additive manufacturing (AM) due to its applications in the biomedical implants and aerospace industries where the complex part geometries allowed by AM provide cost and performance benefits. Ti-6Al-4 V goes through a β → α’ transformation after solidification which is known to experience variant selection, e.g., through the formation of clusters of variants which, when situated together, partially accommodate the strain of the phase transformation. During electron beam powder bed fusion AM, an in situ decomposition of α’ martensite occurs during the cyclic reheating caused by melting successive layers, resulting in α + β microstructures. How variant selection influences the evolution beyond the initial rapid cooling remains an open question. Using 3D electron backscatter diffraction, we provide a clearer understanding without ambiguity from sectioning effects of how α’ decomposes into microstructures with distinct morphologies and variant/intervariant distributions. We extract quantitative 3D information on the various intervariant boundaries networks formed in samples printed using three different electron beam scanning strategies. This shows that differing mechanisms during the decomposition result in a shift from self-accommodating clusters in an acicular microstructure, to either the preferred growth of six variants in a basketweave microstructure, or to a colony microstructure where variant selection is determined by prior-β grain boundaries. We propose a new representation of the misorientations arising from the Burgers orientation relationship, which we refer to as intervariant network diagram, to reveal how variant selection during the martensitic transformation and subsequent decomposition leads to the intervariant boundary networks observed. This holistic understanding of the microstructural evolution has the potential to allow tailoring of microstructures and properties for specific applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

E-PBF:

Electron-beam powder bed fusion

BOR:

Burgers orientation relationship

FIB:

Focused ion beam

EBSD:

Electron backscatter diffraction

RHAGB:

Random high-angle grain boundary

IPF:

Inverse pole figure

DVS:

Degree of variant selection

References

  1. Collings, E.W. (1984) The physical metallury of titanium alloys, American Society for Metals

  2. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des. https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  3. Gong, X., Anderson, T., Chou, K., (2012) Review on powder-based electron beam additive manufacturing technology, In: ASME/ISCIE 2012 Int. Symp. Flex. Autom., ASME, p. 507 https://doi.org/10.1115/ISFA2012-7256.

  4. Zhang L-C, Liu Y, Li S, Hao Y (2018) Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater 20:1700842. https://doi.org/10.1002/adem.201700842

    Article  CAS  Google Scholar 

  5. Ahmed T, Rack HJ (1998) Phase transformations during cooling in α + β titanium alloys. Mater Sci Eng A 243:206–211. https://doi.org/10.1016/s0921-5093(97)00802-2

    Article  Google Scholar 

  6. Semiatin SL (2020) An overview of the thermomechanical processing of α/β titanium alloys: current status and future research opportunities. Metall Mater Trans A Phys Metall Mater Sci 51:2593–2625. https://doi.org/10.1007/s11661-020-05625-3

    Article  CAS  Google Scholar 

  7. Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The 0rigin of Microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metall Mater Trans A 41:3422–3434. https://doi.org/10.1007/s11661-010-0397-x

    Article  CAS  Google Scholar 

  8. Tan X, Kok Y, Tan YJ, Descoins M, Mangelinck D, Tor SB, Leong KF, Chua CK (2015) Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater 97:1–16. https://doi.org/10.1016/J.ACTAMAT.2015.06.036

    Article  CAS  Google Scholar 

  9. Tan X, Kok Y, Toh WQ, Tan YJ, Descoins M, Mangelinck D, Tor SB, Leong KF, Chua CK (2016) Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V. Sci Rep 6:1–10. https://doi.org/10.1038/srep26039

    Article  CAS  Google Scholar 

  10. Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2016) Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 10:47–57. https://doi.org/10.1016/J.ADDMA.2016.02.003

    Article  CAS  Google Scholar 

  11. Galarraga H, Warren RJ, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2017) Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater Sci Eng A 685:417–428. https://doi.org/10.1016/J.MSEA.2017.01.019

    Article  CAS  Google Scholar 

  12. Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE (2013) Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 22:3872–3883. https://doi.org/10.1007/s11665-013-0658-0

    Article  CAS  Google Scholar 

  13. Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI, Martinez EY, Medina F, Hernandez DH, Martinez E, Martinez JL, Stafford SW, Brown DK, Hoppe T, Meyers W, Lindhe U, Wicker RB (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater Charact 60:96–105. https://doi.org/10.1016/J.MATCHAR.2008.07.006

    Article  CAS  Google Scholar 

  14. Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater Charact 84:153–168. https://doi.org/10.1016/j.matchar.2013.07.012

    Article  CAS  Google Scholar 

  15. Sridharan N, Chen Y, Nandwana P, Ulfig RM, Larson DJ, Babu SS (2019) On the potential mechanisms of b to a’+ b decomposition in two phase titanium alloys during additive manufacturing: a combined transmission Kikuchi diffraction and 3D atom probe study. J Mater Sci. https://doi.org/10.1007/s10853-019-03984-w

    Article  Google Scholar 

  16. Wu MW, Chen JK, Lin BH, Chiang PH, Tsai MK (2020) Compressive fatigue properties of additive-manufactured Ti-6Al-4V cellular material with different porosities. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.139695

    Article  Google Scholar 

  17. Barriobero-Vila P, Artzt K, Stark A, Schell N, Siggel M, Gussone J, Kleinert J, Kitsche W, Requena G, Haubrich J (2020) Mapping the geometry of Ti-6Al-4V: from martensite decomposition to localized spheroidization during selective laser melting. Scr Mater 182:48–52. https://doi.org/10.1016/j.scriptamat.2020.02.043

    Article  CAS  Google Scholar 

  18. Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M (2015) Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater 85:74–84. https://doi.org/10.1016/j.actamat.2014.11.028

    Article  CAS  Google Scholar 

  19. Xu W, Lui EW, Pateras A, Qian M, Brandt M (2017) In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater 125:390–400. https://doi.org/10.1016/j.actamat.2016.12.027

    Article  CAS  Google Scholar 

  20. Fan H, Yang S (2020) Effects of direct aging on near-alpha Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM). Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.139533

    Article  Google Scholar 

  21. Zhang D, Wang L, Zhang H, Maldar A, Zhu G, Chen W, Park JS, Wang J, Zeng X (2020) Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization. Acta Mater 189:93–104. https://doi.org/10.1016/j.actamat.2020.03.003

    Article  CAS  Google Scholar 

  22. Burgers WG (1934) On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1:561–586. https://doi.org/10.1016/S0031-8914(34)80244-3

    Article  CAS  Google Scholar 

  23. Gey N, Humbert M (2002) Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet. Acta Mater 50:277–287. https://doi.org/10.1016/S1359-6454(01)00351-2

    Article  CAS  Google Scholar 

  24. Gey N, Humbert M, Philippe MJ, Combres Y (1996) Investigation of the α- and β- texture evolution of hot rolled Ti-64 products. Mater Sci Eng A 219:80–88. https://doi.org/10.1016/S0921-5093(96)10388-9

    Article  Google Scholar 

  25. Hémery S, Naït-Ali A, Guéguen M, Wendorf J, Polonsky AT, Echlin MP, Stinville JC, Pollock TM, Villechaise P (2019) A 3D analysis of the onset of slip activity in relation to the degree of micro-texture in Ti-6Al-4V. Acta Mater. https://doi.org/10.1016/j.actamat.2019.09.028

    Article  Google Scholar 

  26. Qiu D, Shi R, Zhang D, Lu W, Wang Y (2015) Variant selection by dislocations during α precipitation in α/β titanium alloys. Acta Mater 88:218–231. https://doi.org/10.1016/j.actamat.2014.12.044

    Article  CAS  Google Scholar 

  27. Bhattacharyya D, Viswanathan G, Denkenberger R, Furrer D, Fraser HL (2003) The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy. Acta Mater 51:4679–4691. https://doi.org/10.1016/S1359-6454(03)00179-4

    Article  CAS  Google Scholar 

  28. Lee E, Banerjee R, Kar S, Bhattacharyya D, Fraser HL (2007) Selection of α variants during microstructural evolution in α/β titanium alloys. Philos Mag 87:3615–3627. https://doi.org/10.1080/14786430701373672

    Article  CAS  Google Scholar 

  29. Bhattacharyya D, Viswanathan GB, Fraser HL (2007) Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy. Acta Mater 55:6765–6778. https://doi.org/10.1016/j.actamat.2007.08.029

    Article  CAS  Google Scholar 

  30. Banerjee R, Bhattacharyya D, Collins PC, Viswanathan GB, Fraser HL (2004) Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy—An orientation microscopy study. Acta Mater 52:377–385. https://doi.org/10.1016/j.actamat.2003.09.038

    Article  CAS  Google Scholar 

  31. Stanford N, Bate PS (2004) Crystallographic variant selection in Ti-6Al-4V. Acta Mater 52:5215–5224. https://doi.org/10.1016/j.actamat.2004.07.034

    Article  CAS  Google Scholar 

  32. Shi R, Dixit V, Viswanathan GB, Fraser HL, Wang Y (2016) Experimental assessment of variant selection rules for grain boundary α in titanium alloys. Acta Mater 102:197–211. https://doi.org/10.1016/j.actamat.2015.09.021

    Article  CAS  Google Scholar 

  33. Furuhara T, Takagi S, Watanabe H, Mak T (1996) Crystallography of grain boundary α precipitates in a β titanium alloy. Metall Mater Trans A Phys Metall Mater Sci 27:1635–1646. https://doi.org/10.1007/BF02649821

    Article  Google Scholar 

  34. Lee JK, Aaronson HI (1975) Influence of faceting upon the equilibrium shape of nuclei at grain boundaries-II. Three Dimen Acta Metall 23:809–820. https://doi.org/10.1016/0001-6160(75)90197-2

    Article  Google Scholar 

  35. Lee JK, Aaronson H (1975) Influence of faceting upon the equilibrium shape of nuclei at grain boundaries—I. Two-dimensions, Acta Metall 23:799–808. https://doi.org/10.1016/0001-6160(75)90196-0

    Article  Google Scholar 

  36. Wang SC, Aindow M, Starink MJ (2003) Effect of self-accommodation on α/α boundary populations in pure titanium. Acta Mater 51:2485–2503. https://doi.org/10.1016/S1359-6454(03)00035-1

    Article  CAS  Google Scholar 

  37. Farabi E, Hodgson PD, Rohrer GS, Beladi H (2018) Five-parameter intervariant boundary characterization of martensite in commercially pure titanium. Acta Mater 154:147–160. https://doi.org/10.1016/j.actamat.2018.05.023

    Article  CAS  Google Scholar 

  38. Miyano N, Norimura T, Inaba T, Ameyama K (2006) Reasons for Formation of triangular α precipitates in Ti–15V–3Cr–3Sn–3Al β titanium alloy. Mater Trans 47:341–347. https://doi.org/10.2320/matertrans.47.341

    Article  CAS  Google Scholar 

  39. Balachandran S, Kashiwar A, Choudhury A, Banerjee D, Shi R, Wang Y (2016) On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy. Acta Mater 106:374–387. https://doi.org/10.1016/J.ACTAMAT.2016.01.023

    Article  CAS  Google Scholar 

  40. Beladi H, Chao Q, Rohrer GS (2014) Variant selection and intervariant crystallographic planes distribution in martensite in a Ti–6Al–4V alloy. Acta Mater 80:478–489. https://doi.org/10.1016/J.ACTAMAT.2014.06.064

    Article  CAS  Google Scholar 

  41. Wei Z, Yang P, Gu X, Onuki Y, Sato S (2020) Transformation textures in pure titanium: Texture memory vs surface effect. Mater Charact. https://doi.org/10.1016/j.matchar.2020.110359

    Article  Google Scholar 

  42. Farabi E, Tari V, Hodgson PD, Rohrer GS, Beladi H (2020) On the grain boundary network characteristics in a martensitic Ti-6Al-4V alloy. J Mater Sci. https://doi.org/10.1007/s10853-020-05075-7

    Article  Google Scholar 

  43. Simonelli M, Tse YY, Tuck C (2014) On the texture formation of selective laser melted Ti-6Al-4V. Metall Mater Trans A Phys Metall Mater Sci 45:2863–2872. https://doi.org/10.1007/s11661-014-2218-0

    Article  CAS  Google Scholar 

  44. Liu Q, Qiu C (2020) Variant selection of α precipitation in a beta titanium alloy during selective laser melting and its influence on mechanical properties. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.139336

    Article  Google Scholar 

  45. Jiao Z, Fu J, Li Z, Cheng X, Tang H, Wang H (2018) The spatial distribution of α phase in laser melting deposition additive manufactured Ti-10V-2Fe-3Al alloy. Mater Des 154:108–116. https://doi.org/10.1016/j.matdes.2018.05.032

    Article  CAS  Google Scholar 

  46. Williams, R.E.A., Uchic, M., Dimiduk, D., Fraser, H.L. (2006) Three dimensional reconstruction of alpha laths in α/β titanium alloys by serial sectioning with a FEI NOVA 600. In: Microsc. Microanal., Cambridge University Press, pp. 1234–1235 https://doi.org/10.1017/S1431927606066256

  47. Searles T, Tiley J, Tanner A, Williams R, Rollins B, Lee E, Kar S, Banerjee R, Fraser HL (2005) Rapid characterization of titanium microstructural features for specific modelling of mechanical properties. Meas Sci Technol 16:60–69. https://doi.org/10.1088/0957-0233/16/1/009

    Article  CAS  Google Scholar 

  48. Sharma H, van Bohemen SMC, Petrov RH, Sietsma J (2010) Three-dimensional analysis of microstructures in titanium. Acta Mater 58:2399–2407. https://doi.org/10.1016/j.actamat.2009.12.026

    Article  CAS  Google Scholar 

  49. Nandwana P, Nag S, Hill D, Tiley J, Fraser HL, Banerjee R (2012) On the correlation between the morphology of α and its crystallographic orientation relationship with TiB and β in boron-containing Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy. Scr Mater 66:598–601. https://doi.org/10.1016/j.scriptamat.2012.01.011

    Article  CAS  Google Scholar 

  50. Barriobero-Vila P, Gussone J, Haubrich J, Sandlöbes S, Da Silva J, Cloetens P, Schell N, Requena G (2017) Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments. Materials (Basel). https://doi.org/10.3390/ma10030268

    Article  Google Scholar 

  51. Williams, R., Bhattacharyya, D., Viswanathan, G.B., Banerjee, R., Fraser, H.L., (2004) Application of FIB-tomography to the study of microstructures in titanium alloys, in: Microsc. Microanal., Cambridge University Press, pp. 1178–1179 https://doi.org/10.1017/S1431927604884186

  52. Williams, R.E.A., Huber, D., Sosa, J., Fraser, H.L. (2014) 15 years of characterizing titanium alloys’ microstructure by DBFIB. In: Microsc. Microanal., Cambridge University Press, pp. 322–323 https://doi.org/10.1017/S143192761400333X

  53. Hull DA, McCammond D, Hoeppner DW, Hellier WG (1991) Titanium prior-beta grain volume distribution by quantitative serial sectioning techniques. Mater Charact 26:63–71. https://doi.org/10.1016/1044-5803(91)90067-E

    Article  CAS  Google Scholar 

  54. Vanderesse N, Maire E, Darrieulat M, Montheillet F, Moreaud M, Jeulin D (2008) Three-dimensional microtomographic study of Widmanstätten microstructures in an alpha/beta titanium alloy. Scr Mater 58:512–515. https://doi.org/10.1016/j.scriptamat.2007.11.005

    Article  CAS  Google Scholar 

  55. He D, Zaefferer S, Zhu J, Lai Z (2012) Three-dimensional morphological and crystallographic investigation of lamellar alpha and retained beta in a near alpha titanium alloy by combination of focused ion beam and electron backscattering diffraction. Steel Res Int. https://doi.org/10.1002/srin.201200013

    Article  Google Scholar 

  56. Kashiwar, A. (2014) 3D MICROSTRUCTURAL CHARACTERIZATION IN SOME ALLOYS USING SERIAL SECTIONING TECHNIQUES, IISc Bangalore. http://materials.iisc.ernet.in/~dbanerjee/assets/thesis_ankush.pdf. Accessed 2 May 2019

  57. Wielewski E, Menasche DB, Callahan PG, Suter RM (2015) Three-dimensional colony characterization and prior-β grain reconstruction of a lamellar Ti-6Al-4V specimen using near-field high-energy X-ray diffraction microscopy. J Appl Crystallogr 48:1165–1171. https://doi.org/10.1107/S1600576715011139

    Article  CAS  Google Scholar 

  58. Tiley JS, Shiveley AR, Pilchak AL, Shade PA, Groeber MA (2014) 3D reconstruction of prior β grains in friction stir-processed Ti-6Al-4V. J Microsc 255:71–77. https://doi.org/10.1111/jmi.12137

    Article  CAS  Google Scholar 

  59. Burnett TL, Kelley R, Winiarski B, Contreras L, Daly M, Gholinia A, Burke MG, Withers PJ (2016) Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy. https://doi.org/10.1016/j.ultramic.2015.11.001

    Article  Google Scholar 

  60. DeMott R, Collins P, Kong C, Liao X, Ringer S, Primig S (2020) 3D electron backscatter diffraction study of α lath morphology in additively manufactured Ti-6Al-4V. Ultramicroscopy. https://doi.org/10.1016/j.ultramic.2020.113073

    Article  Google Scholar 

  61. Ma J, Tian J, Yan M, Chen Z, Shen J, Wu J (2020) Defect analysis and 2D/3D-EBSD investigation of an electron beam melted Ti-6Al-4V alloy. Mater Charact. https://doi.org/10.1016/j.matchar.2020.110440

    Article  Google Scholar 

  62. Kirka MM, Lee Y, Greeley DA, Okello A, Goin MJ, Pearce MT, Dehoff RR (2017) Strategy for texture management in metals additive manufacturing. JOM 69:523–531. https://doi.org/10.1007/s11837-017-2264-3

    Article  CAS  Google Scholar 

  63. Dehoff, R. R., Kirka, M. M., Sames, W. J., Bilheux, H., Tremsin, A. S., Lowe, L. E., Babu, S. S (2014) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol https://doi.org/10.1179/1743284714Y.0000000734

  64. Evans R, Walker J, Middendorf J, Gockel J (2020) Modeling and monitoring of the effect of scan strategy on microstructure in additive manufacturing. Metall Mater Trans A Phys Metall Mater Sci 51:4123–4129. https://doi.org/10.1007/s11661-020-05830-0

    Article  CAS  Google Scholar 

  65. Juechter V, Scharowsky T, Singer RF, Körner C (2014) Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting. Acta Mater 76:252–258. https://doi.org/10.1016/j.actamat.2014.05.037

    Article  CAS  Google Scholar 

  66. Haghdadi N, DeMott R, Stephenson PL, Liao XZ, Ringer SP, Primig S (2020) Five-parameter characterization of intervariant boundaries in additively manufactured Ti-6Al-4V. Mater Des. https://doi.org/10.1016/j.matdes.2020.109177

    Article  Google Scholar 

  67. Stephenson PL, Haghdadi N, DeMott R, Liao XZ, Ringer SP, Primig S (2020) Effect of scanning strategy on variant selection in additively manufactured Ti-6Al-4V. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101581

    Article  Google Scholar 

  68. Shao M, Vijayan S, Nandwana P, Jinschek JR (2020) The effect of beam scan strategies on microstructural variations in Ti-6Al-4 V fabricated by electron beam powder bed fusion. Mater Des. https://doi.org/10.1016/j.matdes.2020.109165

    Article  Google Scholar 

  69. Groeber MA, Jackson MA (2014) DREAM3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3:56–72. https://doi.org/10.1186/2193-9772-3-5

    Article  Google Scholar 

  70. Bachmann, F., Hielscher, R., Schaeben, H. (2010) Texture analysis with MTEX- Free and open source software toolbox. In: Solid State Phenom., Trans Tech Publications Ltd, pp. 63–68 https://doi.org/10.4028/www.scientific.net/SSP.160.63.

  71. van Bohemen SMC, Kamp A, Petrov RH, Kestens LAI, Sietsma J (2008) Nucleation and variant selection of secondary α plates in a β Ti alloy. Acta Mater 56:5907–5914. https://doi.org/10.1016/j.actamat.2008.08.016

    Article  CAS  Google Scholar 

  72. Quintana, M. J., Kenney, M. J., Agrawal, P., Collin, C. (2020) Texture analysis of additively manufactured Ti-6Al-4V deposited using different scanning strategies. Metall Mater Trans A Phys Metall Mater Sci 51:574–6583 https://doi.org/10.1007/s11661-020-06040-4.

  73. Pesach A, Tiferet E, Vogel SC, Chonin M, Diskin A, Zilberman L, Rivin O, Yeheskel O, Caspi EN (2018) Texture analysis of additively manufactured Ti-6Al-4V using neutron diffraction. Addit Manuf 23:394–401. https://doi.org/10.1016/j.addma.2018.08.010

    Article  CAS  Google Scholar 

  74. Reed BW, Adams BL, Bernier JV, Hefferan CM, Henrie A, Li SF, Lind J, Suter RM, Kumar M (2012) Experimental tests of stereological estimates of grain boundary populations. Acta Mater 60:2999–3010. https://doi.org/10.1016/j.actamat.2012.02.005

    Article  CAS  Google Scholar 

  75. Song J, Han Y, Fang M, Hu F, Ke L, Li Y, Lei L, Lu W (2020) Temperature sensitivity of mechanical properties and microstructure during moderate temperature deformation of selective laser melted Ti-6Al-4V alloy. Mater Charact. https://doi.org/10.1016/j.matchar.2020.110342

    Article  Google Scholar 

  76. Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61:844–879. https://doi.org/10.1016/j.actamat.2012.10.043

    Article  CAS  Google Scholar 

  77. Miyazawa K, Iwasaki Y, Ito K, Ishida Y (1996) Combination rule of Σ values at triple junctions in cubic polycrystals. Acta Crystallogr Sect A Found Crystallogr 52:787–796. https://doi.org/10.1107/S0108767396005934

    Article  Google Scholar 

  78. Makiewicz, K. Keller, M., Chaudhary, A. B., Babu, S. S. (2012) Microstructure evolution during laser additive manufacturing of Ti6Al4V Alloys. In: DebRoy, T., David, S. A., DuPont, J. N., Koseki, T., Bhadeshia, H. K. (eds), 9th Int. Conf. Trends Weld., American Society for Metals, 2012. https://www.researchgate.net/publication/267902949_Microstructure_Evolution_During_Laser_Additive_Manufacturing_of_Ti6Al4V_Alloys. Accessed 28 Aug 2020

  79. Galati M, Iuliano L (2018) A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manuf 19:1–20. https://doi.org/10.1016/j.addma.2017.11.001

    Article  Google Scholar 

  80. Landau E, Tiferet E, Ganor YI, Ganeriwala RK, Matthews MJ, Braun D, Chonin M, Ziskind G (2020) Thermal characterization of the build chamber in electron beam melting. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101535

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Department of Industry, Innovation and Science under the auspices of the AUSMURI program (AUSMURI000005). The authors further acknowledge the facilities, as well as the scientific and technical support of the Microscopy Australia node at UNSW Sydney (Mark Wainwright Centre). We would also like to thank Prof. Sudarsanam Suresh Babu and Sabina Kumar at The University of Tennessee, Knoxville for providing materials, Prof. Peter Collins and Matthew Kenney at The University of Iowa, Dr. Charlie Kong at UNSW Sydney for fruitful discussions, and Mike Jackson for support with the DREAM.3D software package. S. Primig is further supported by the Australian Research Council DECRA (DE180100440) and UNSW Scientia Fellowship schemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Primig.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to this work.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 35500 kb)

Supplementary file2 (MP4 37235 kb)

Supplementary file3 (MP4 36943 kb)

Supplementary file4 (MP4 35682 kb)

Supplementary file5 (MP4 39867 kb)

Supplementary file6 (MP4 28221 kb)

Supplementary file7 (MP4 14071 kb)

Supplementary file8 (MP4 14221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeMott, R., Haghdadi, N., Liao, X. et al. 3D characterization of microstructural evolution and variant selection in additively manufactured Ti-6Al-4 V. J Mater Sci 56, 14763–14782 (2021). https://doi.org/10.1007/s10853-021-06216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06216-2

Navigation