Skip to main content
Log in

Implications of the size variation on the local structure and polarized emission of CsPbBr3 quantum dots

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CsPbBr3 nanocrystals (NCs) due to their extraordinary photoluminescence quantum yield and photostability without any inorganic passivation (core–shell) are probable candidates for LED and LASER applications. Additionally, the polarized luminescence of these NCs in ensemble broadens the field of applications, especially in liquid crystal display. Here, we report structural distortions and polarized emission from CsPbBr3 nanocubes with varying sizes of NCs. The change in Br–Pb and Br–Cs bond lengths with decreasing size of QDs reveals secrete of unprecedented increase in degree of emission polarization. The observed degree of polarization in this study is the highest reported value so far for lead halide perovskite structures in ensemble form without any additional alignment process. Different experimental configurations are used to study the transition dipole moments of CsPbBr3 NCs, which suggests that the transition dipole moments of absorption and emission are non collinear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Swarnkar A, Chulliyil R, Ravi VK, Irfanullah M, Chowdhury A, Nag A (2015) Colloidal CsPbBr 3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew Chem 127:15644–15648

    Article  Google Scholar 

  2. Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H (2016) CsPbX3 Quantum dots for lighting and displays: room temperature synthesis, photoluminescence superiorities underlying origins and white light-emitting diodes. Adv Funct Mater 26:2435–2445

    Article  CAS  Google Scholar 

  3. Wang Y, Li X, Zhao X, Xiao L, Zeng H, Sun H (2016) Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett 16:448–453

    Article  CAS  Google Scholar 

  4. Zheng F, Tan LZ, Liu S, Rappe AM (2015) Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett 15:7794–7800

    Article  CAS  Google Scholar 

  5. Chen J, Zhang Q, Du W, Mi Y, Shang Q, Liu P, Sui X, Wu X, Wang R, Peng B, Zhong H, Xing G, Qiu X, Sum TC, Liu X (2019) Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance Communications. Physics 2:80. https://doi.org/10.1038/s42005-019-0178-9

    Article  CAS  Google Scholar 

  6. Raino G, Becker MA, Bodnarchuk MI, Mahrt RF, Kovalenko MV, Stoferle T (2018) Superfluorescence from lead halide perovskite quantum dot superlattice. Nature 563:671–675

    Article  CAS  Google Scholar 

  7. Brennan MC, Kuno M, Rouvimov S (2019) Crystal structure of individual CsPbBr 3 perovskite nanocubes. Inorg Chem 58:1555–1560

    Article  CAS  Google Scholar 

  8. Beimborn JC II, Walther LR, Wilson KD, Weber JM (2020) Size-dependent pressure-response of the photoluminescence of CsPbBr 3 nanocrystals. J Phys Chem Lett 11:1975–1980

    Article  CAS  Google Scholar 

  9. Beimborn JC II, Hall LMG, Tongying P, Dukovic G, Weber JM (2018) Pressure response of photoluminescence in cesium lead iodide perovskite nanocrystals. J Phys Chem C 122:11024–11030

    Article  CAS  Google Scholar 

  10. Xiao G, Guangyu YC, Wang L, Liu C, Ma Z, Yang X, Sui Y, Zheng W, Zou B (2017) Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. J Am Chem Soc 139:10087–10094

    Article  CAS  Google Scholar 

  11. Liu L, Huang S, Pan L, Shi LJ, Zou B, Deng L, Zhong H (2017) Colloidal synthesis of CH3NH3PbBr 3 nanoplatelets with polarized emission through self-organization. Angew Chem 56:1780–1783

    Article  CAS  Google Scholar 

  12. Shi Z, Li Y, Li S, Ji H, Lei L, Wu D, Xu T, Xu J, Tian Y, Li X (2017) Polarized emission effect realized in CH3NH3PbI3 perovskite nanocrystals. J Mater Chem C 5:8699–8706

    Article  CAS  Google Scholar 

  13. Chamarro M, Gourdon C, Lavallard P (1996) Photoluminescence polarization of semiconductor nanocrystals. J Lumin 70:222–237

    Article  CAS  Google Scholar 

  14. Cunningham PD, Souza JB, Fedin I, She C, Lee B, Talapin DV (2016) Assessment of anisotropic semiconductor nanorod and nanoplatelet heterostructures with polarized emission for liquid crystal display technology. ACS Nano 10:5769–5781

    Article  CAS  Google Scholar 

  15. He J, Towers A, Wang Y, Yuan P, Jiang Z, Chen J, Gesquiere AJ, Wu S, Dong Y (2018) In situ synthesis and macroscale alignment of CsPbBr 3 perovskite nanorods in a polymer matrix. Nanoscale 10:15436–15441

    Article  CAS  Google Scholar 

  16. Hu J, Li L, Yang W, Manna L, Wang L (2012) Linearly polarized emission from colloidal semiconductor quantum rods. Science 292:2060–2063

    Article  Google Scholar 

  17. Glorieux Q, Vezzoli S, Manceau M, Leme G, Giacobino E, Carbone L, Vittorio MD, Bramati A (2015) Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature. ACS Nano 9:7992–8003

    Article  Google Scholar 

  18. Planelles J, Rajadell F, Climente JI (2016) Electronic origin of linearly polarized emission in CdSe/CdS dot-in-rod heterostructures. J Phys Chem C 120:27724–27730

    Article  CAS  Google Scholar 

  19. Lundskog A, Hsu C, Karlsson KF, Amloy S, Nilsson D, Forsberg U, Holtz PO, Janzen E (2014) Direct generation of linearly polarized photon emission with designated orientations from site-controlled InGaN quantum dots. Light Sci Appl 3:e139. https://doi.org/10.1038/lsa.2014.20

    Article  CAS  Google Scholar 

  20. Banin U, Arbell H (2014) US Patent Appl. 13/883:701

  21. Wang D, Wu D, Dong D, Chen W, Hao J, Qin J, Xu B, Wang K, Sun X (2016) Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 8:11565–11570

    Article  CAS  Google Scholar 

  22. Raja SN, Bekenstein Y, Koc MA, Fischer S, Zhang D, Lin L, Ritchie RO, Yang P, Alivisatos AP (2016) Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl Mater Interfaces 8:35523–35533

    Article  CAS  Google Scholar 

  23. Guner T, Topcu G, Savac U, Genc A, Turan S, Sari E, Demir MM (2018) Polarized emission from CsPbBr 3 nanowire embedded-electrospun PU fibers. Nanotechnology 29:135202. https://doi.org/10.1088/1361-6528/aaaaef

    Article  CAS  Google Scholar 

  24. Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY (2015) Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14:636–642

    Article  CAS  Google Scholar 

  25. Protesescu L, Yakunin S, Bodnarchuk M, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696

    Article  CAS  Google Scholar 

  26. Shinde A, Gahlaut R, Mahamuni S (2017) Low temperature photoluminescence studies of CsPbBr 3 quantum dots. J Phys Chem C 121:14872–14878

    Article  CAS  Google Scholar 

  27. Newville M, Ravel B, Haskel D, Rehra JJ, Stern EA, Yacoby Y (1995) Analysis of multiple-scattering XAFS data using theoretical standards. Phys B: Condensed Mater 208:154–156

    Article  Google Scholar 

  28. Nozaki T, Pati SP, Shiokawa Y, Suzuki M, Ina T, Mibu K, Al-Mahdawi M, Ye S, Sahashi M (2019) Identifying valency and occupation sites of Ir dopants in antiferromagnetic α-Fe2O3 thin films with X-ray absorption fine structure and Mössbauer spectroscopy. J Appl Phys 125:113903. https://doi.org/10.1063/1.5080483

    Article  CAS  Google Scholar 

  29. Lopez CA, Abia C, Alvarez-Galvan MC, Hong BK, Martinez-Huerta MV, Serrano-Sanchez F, Carrascoso F, Castellanos-Gomez A, Fernandez-Diaz MT, Alonso JA (2020) Crystal structure features of CsPbBr 3 perovskite prepared by mechanochemical synthesis. ACS Omega 5:5931–5938

    Article  CAS  Google Scholar 

  30. Yong Z, Guo S, Ma J, Zhang J, Li Z, Chen Y, Zhang B, Zhou Y, Shu J, Gu J, Zheng L, Bakr OM, Sun HJ (2018) Doping enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc 140:9942–9951

    Article  CAS  Google Scholar 

  31. Chen Q, Marco ND, Michael Y, Song T, Chen C, Zhao H (2015) Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10:355–396

    Article  CAS  Google Scholar 

  32. Dou Y, Cao F, Dudka T, Li Y, Wang S, Zhang C, Gao Y, Yang X, Rogach AL (2020) Lattice distortion in mixed-anion lead halide perovskite nanorods leads to their high fluorescence anisotropy. ACS Materials Lett 2:814–820

    Article  CAS  Google Scholar 

  33. Uran C, Erdem T, Guzelturk B, Perkgoz NK, Jun S, Jang E, Demir HV (2014) Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires. Appl Phys Lett 105:141116. https://doi.org/10.1063/1.4897971

    Article  CAS  Google Scholar 

  34. Prutskij T, Makarov N, Attolini G (2016) Temperature dependence of the photoluminescence polarization of ordered III-V semiconductor alloys. J Appl Phys 119:115702. https://doi.org/10.1063/1.4944436

    Article  CAS  Google Scholar 

  35. Babin V, Fabeni P, Nikl M, Pazzi GP, Sildos I, Zazubovich N, Zazubovich S (1999) Polarized luminescence of CsPbBr 3 nanocrystals (quantum dots) in CsBr: Pb single crystal. Chem Phys Lett 314:31–36

    Article  CAS  Google Scholar 

  36. Lokowicz JR (2006) Principles of fluorescence spectrocsopy. Springer, New York

    Book  Google Scholar 

  37. Stranks SD, Polchocka P (2018) The influence of the Rashba effect. Nat Mater 17:381–382

    Article  CAS  Google Scholar 

  38. Frohna K, Deshpande T, Harter J, Peng W, Barker BA, Neaton JB, Louie SG, Bakr OM, Hsieh D, Bernardi M (2018) Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat Commum 9:1829. https://doi.org/10.1038/s41467-018-04212-w

    Article  CAS  Google Scholar 

  39. Isarov M, Tan LZ, Bodnarchuk MI, Kovalenko MV, Rappe AM, Lifshitz E (2017) Rashba effect in a single colloidal CsPbBr 3 perovskite nanocrystal detected by magneto optical measurements. Nano Lett 17:5020–5026

    Article  CAS  Google Scholar 

  40. Chen X, Liu L, Shen D (2018) n-type Rashba spin splitting in a bilayer inorganic halide perovskite with external electric field. J Phys Condens Matter 30:265501. https://doi.org/10.1088/1361-648X/aac523

    Article  Google Scholar 

  41. Etienne T, Mosconi E, Angelis FD (2016) Dynamical origin of the Rashba effect in organohalide lead perovskite: a key to suppressed carrier recombination on perovskite solar cells? J Phys Chem Lett 7:1638–1645

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from Department of Science and Technology Nanomission, New Delhi is thankfully acknowledged. A.S. thanks Savitribai Phule Pune University, Pune, India and Women Scientist Scheme (SR/WOS-A/PM-60/2017 (G)), Department of ScienST, and CSIR New Delhi, India for financial support. R.G. thanks UGC, New Delhi, India for Dr. D. S. Kothari Postdoctoral Scheme. Thanks to Amruta Lohar, Nidhi Tiwari and S. N. Jha for EXAFS measurements at RRCAT, Indore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailaja Mahamuni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts to declare.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, A., Gahlaut, R., Abharana, N. et al. Implications of the size variation on the local structure and polarized emission of CsPbBr3 quantum dots. J Mater Sci 56, 6977–6986 (2021). https://doi.org/10.1007/s10853-020-05712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05712-1

Navigation