Skip to main content
Log in

Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Non-fullerene small molecular acceptors (NFSMAs) exhibit promising photovoltaic performance which promoted the rapid progress of organic solar cells (OSCs). In this study, an attempt is done to explore indenothiophene-based high-performance small molecular electron acceptors for organic solar cells. We have designed five acceptor molecules (M1–M5) with strong donor moiety indenothiophene linked to five different end-capped group acceptor moieties: diflouro-2-methylene-3-oxo-2,3-dihydroindene-1-ylidene)malononitrile (A1), 1-(dicyanomethylene)-2-methylene-3-oxo-2,3-dihydro-1H-indene-5,6-dicarbonitrile (A2), methyl-6-cyano-3-(dicyanomethylene)-2-methylene-1-oxo-2,3-dihydro-1H-indene-5-carboylate (A3), 2-(6-cyano-5-fluoro-2-methylene-3-oxo-2,3 dihydro-1H-indene-1-ylidene)malononitrile (A4), and (Z)-methyl 3-(benzo [c][1,2,5]thiadiazol-4-yl)-2-cyanoacrylate (A5) respectively. The structure–property relationship was studied and effects of structural modification on the optoelectronic properties of these acceptors (M1–M5) were determined systematically by comparing it with reference molecule R, which is recently reported as excellent non-fullerene-based small acceptor molecule. Among all designed molecules, M5 is proven as a suitable candidate for organic solar cell applications due to better photovoltaic properties including narrow HOMO-LUMO energy gap (2.11 eV), smallest electron mobility (λe = 0.0038 eV), highest λmax values (702.82 nm in gas) and (663.09 nm in chloroform solvent) and highest open-circuit voltage (Voc = 1.49 V) with respect to HOMOPTB7-Th–LUMOacceptor. Our results indicate that introducing more end-capped electron-accepting units is a simple and effective alternative strategy for the design of promising NFSMAs. This theoretical framework also proves that the conceptualized NFSMAs are superior and thus are recommended for the future construction of high-performance organic solar cell devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nilsson M, Lucas P, Yoshida T (2013) Towards an integrated framework for SDGs: ultimate and enabling goals for the case of energy. Sustainability 5(10):4124–4151

    Google Scholar 

  2. Su Y-W, Lan S-C, Wei K-H (2012) Organic photovoltaics. Mater Today 15(12):554–562

    CAS  Google Scholar 

  3. Kippelen B, Brédas J-L (2009) Organic photovoltaics. Energy Environ Sci 2(3):251–261

    CAS  Google Scholar 

  4. Li S, Ye L, Zhao W, Zhang S, Ade H, Hou J (2017) Significant influence of the methoxyl substitution position on optoelectronic properties and molecular packing of small-molecule electron acceptors for photovoltaic cells. Adv Energy Mater 7(17):1700183

    Google Scholar 

  5. Gao W, An Q, Ming R, Xie D, Wu K, Luo Z, Zou Y, Zhang F, Yang C (2017) Side group engineering of small molecular acceptors for high-performance fullerene-free polymer solar cells: thiophene being superior to selenophene. Adv Funct Mater 27(34):1702194

    Google Scholar 

  6. Zhan C, Yao J (2016) More than conformational “twisting” or “coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem Mater 28(7):1948–1964

    CAS  Google Scholar 

  7. Fraga Domínguez I, Distler A, Lüer L (2017) Stability of organic solar cells: the influence of nanostructured carbon materials. Adv Energy Mater 7(10):1601320

    Google Scholar 

  8. Yan C, Barlow S, Wang Z, Yan H, Jen AK-Y, Marder SR, Zhan X (2018) Non-fullerene acceptors for organic solar cells. Nat Rev Mater 3(3):18003

    CAS  Google Scholar 

  9. Geng Y, Tang A, Tajima K, Zeng Q, Zhou E (2019) Conjugated materials containing dithieno [3, 2-b: 2′, 3′-d] pyrrole and its derivatives for organic and hybrid solar cell applications. J Mater Chem A 7(1):64–96

    CAS  Google Scholar 

  10. Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28(42):9423–9429

    CAS  PubMed  Google Scholar 

  11. Dai S, Zhao F, Zhang Q, Lau T-K, Li T, Liu K, Ling Q, Wang C, Lu X, You W (2017) Fused nonacyclic electron acceptors for efficient polymer solar cells. J Am Chem Soc 139(3):1336–1343

    CAS  PubMed  Google Scholar 

  12. Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W (2017) Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv Mater 29(18):1700144

    Google Scholar 

  13. Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H (2016) Donor polymer design enables efficient non-fullerene organic solar cells. Nat Commun 7:13094

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J (2018) A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140(23):7159–7167

    CAS  PubMed  Google Scholar 

  15. Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T (2015) High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J Am Chem Soc 138(1):375–380

    PubMed  Google Scholar 

  16. Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26(1):10–28

    CAS  PubMed  Google Scholar 

  17. Douglas JD, Chen MS, Niskala JR, Lee OP, Yiu AT, Young EP, Fréchet JM (2014) Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials. Adv Mater 26(25):4313–4319

    CAS  PubMed  Google Scholar 

  18. Fang Y, Pandey AK, Nardes AM, Kopidakis N, Burn PL, Meredith P (2013) A narrow optical gap small molecule acceptor for organic solar cells. Adv Energy Mater 3(1):54–59

    CAS  Google Scholar 

  19. Chen S, Lee SM, Xu J, Lee J, Lee KC, Hou T, Yang Y, Jeong M, Lee B, Cho Y (2018) Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells. Energy Environ Sci 11(9):2569–2580

    CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria G, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VJ, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) D. 0109, Revision D. 01, Gaussian, Inc., Wallingford, CT

  21. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0. 8, Gaussian Inc

  22. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10(4):405–410

    CAS  Google Scholar 

  23. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    CAS  Google Scholar 

  24. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the m PW and m PW1PW models. J Chem Phys 108(2):664–675

    CAS  Google Scholar 

  25. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    CAS  Google Scholar 

  26. Yang Z, Shao C, Cao D (2015) Screening donor groups of organic dyes for dye-sensitized solar cells. RSC Adv 5(29):22892–22898

    CAS  Google Scholar 

  27. Yang Z, Wang D, Bai X, Shao C, Cao D (2014) Designing triphenylamine derivative dyes for highly effective dye-sensitized solar cells with near-infrared light harvesting up to 1100 nm. RSC Adv 4(89):48750–48757

    CAS  Google Scholar 

  28. Ans M, Ayub K, Bhatti IA, Iqbal J (2019) Designing indacenodithiophene based non-fullerene acceptors with a donor–acceptor combined bridge for organic solar cells. RSC Adv 9(7):3605–3617

    CAS  Google Scholar 

  29. Ans M, Manzoor F, Ayub K, Nawaz F, Iqbal J (2019) Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells. J Mol Model 25(8):222

    PubMed  Google Scholar 

  30. Ans M, Iqbal J, Eliasson B, Ayub K (2019) Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells. Comput Mater Sci 159:150–159

    CAS  Google Scholar 

  31. Ans M, Ayub K, Muhammad S, Iqbal J (2019) Development of fullerene free acceptors molecules for organic solar cells: a step way forward toward efficient organic solar cells. Comp Theor Chem 1161:26–38

    CAS  Google Scholar 

  32. Yang Z, Liu C, Shao C, Zeng X, Cao D (2016) Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting. Nanotechnology 27(26):265701

    PubMed  Google Scholar 

  33. Yang Z, Liu Y, Liu C, Lin C, Shao C (2016) TDDFT screening auxiliary withdrawing group and design the novel DA-π-A organic dyes based on indoline dye for highly efficient dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 167:127–133

    CAS  PubMed  Google Scholar 

  34. Jin R, Irfan A (2017) Molecular design of organic small molecules based on diindole–diimide with fused aromatic heterocycles as donors for organic solar cells. RSC Adv 7(63):39899–39905

    CAS  Google Scholar 

  35. Zhang Z, Han P, Liu X, Zhao J, Jia H, Zeng F, Xu B (2008) First principle calculations of the electronic properties of the fullerene derivative as an electron acceptor in organic solar cells. J Phys Chem C 112(48):19158–19161

    CAS  Google Scholar 

  36. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4(2):297–306

    CAS  PubMed  Google Scholar 

  37. Borges Jr I, Uhl E, Modesto-Costa L, Aquino ALJ, Lischka H (2016) Insight into the excited state electronic and structural properties of the organic photovoltaic donor polymer poly (thieno [3, 4-b] thiophene benzodithiophene) by means of ab initio and density functional theory. J Phys Chem C 120(38):21818–21826

    CAS  Google Scholar 

  38. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001

    CAS  Google Scholar 

  39. Borges Jr I, Aquino AJ, Köhn A, Nieman R, Hase WL, Chen LX, Lischka H (2013) Ab initio modeling of excitonic and charge-transfer states in organic semiconductors: the PTB1/PCBM low band gap system. J Am Chem Soc 135(49):18252–18255

    CAS  PubMed  Google Scholar 

  40. Ajmal M, Ali U, Javed A, Tariq A, Arif Z, Iqbal J, Shoaib M, Ahmed T (2019) Designing indaceno thiophene–based three new molecules containing non-fullerene acceptors as strong electron withdrawing groups with DFT approaches. J Mol Model 25(10):311

    PubMed  Google Scholar 

  41. Ans M, Iqbal J, Eliasson B, Saif MJ, Javed HMA, Ayub K (2019) Designing of non-fullerene 3D star-shaped acceptors for organic solar cells. J Mol Model 25(5):129

    PubMed  Google Scholar 

  42. Ali U, Javed A, Tallat A, Iqbal J, Raza A (2019) Molecular designing of four high performance pyrazine-based non-fullerene acceptor materials with naphthalene diimide-based small organic solar cells. J Mol Model 25(2):50

    PubMed  Google Scholar 

  43. Khan MU, Iqbal J, Khalid M, Hussain R, Braga AAC, Hussain M, Muhammad S (2019) Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv 9(45):26402–26418

    CAS  Google Scholar 

  44. Ans M, Iqbal J, Ahmad Z, Muhammad S, Hussain R, Eliasson B, Ayub K (2018) Designing three-dimensional (3D) non-fullerene small molecule acceptors with efficient photovoltaic parameters. ChemistrySelect 3(45):12797–12804

    CAS  Google Scholar 

  45. Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127(7):2339–2350

    CAS  PubMed  Google Scholar 

  46. Köse ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles G (2007) Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J Am Chem Soc 129(46):14257–14270

    PubMed  Google Scholar 

  47. Tang S, Zhang J (2012) Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo (thienylenevinylene) toward solar cells. J Comput Chem 33(15):1353–1363

    CAS  PubMed  Google Scholar 

  48. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845

    PubMed  Google Scholar 

  49. May RA, Stevenson KJ (2009) Software review of Origin 8. ACS Publications

  50. Khan MU, Khalid M, Ibrahim M, Braga AAC, Safdar M, Al-Saadi AA, Janjua MRSA (2018) First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J Phys Chem C 122(7):4009–4018

    CAS  Google Scholar 

  51. Janjua MRSA, Khan MU, Bashir B, Iqbal MA, Song Y, Naqvi SAR, Khan ZA (2012) Effect of π-conjugation spacer (C C) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: a DFT study. Comp Theor Chem 994:34–40

    CAS  Google Scholar 

  52. Janjua MRSA, Amin M, Ali M, Bashir B, Khan MU, Iqbal MA, Guan W, Yan L, Su ZM (2012) A DFT study on the two-dimensional second-order nonlinear optical (NLO) response of terpyridine-substituted hexamolybdates: physical insight on 2D inorganic–organic hybrid functional materials. Eur J Inorg Chem 2012(4):705–711

    CAS  Google Scholar 

  53. Khan MU, Ibrahim M, Khalid M, Qureshi MS, Gulzar T, Zia KM, Al-Saadi AA, Janjua MRSA (2019) First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem Phys Lett 715:222–230

    CAS  Google Scholar 

  54. Khan MU, Ibrahim M, Khalid M, Braga AAC, Ahmed S, Sultan A (2019) Prediction of second-order nonlinear optical properties of D–p–A compounds containing novel fluorene derivatives: a promising route to giant hyperpolarizabilities. J Clust Sci 30(2):415–430

    CAS  Google Scholar 

  55. Khan MU, Ibrahim M, Khalid M, Jamil S, Al-Saadi AA, Janjua MRSA (2019) Quantum chemical designing of indolo [3, 2, 1-jk] carbazole-based dyes for highly efficient nonlinear optical properties. Chem Phys Lett 719:59–66

    CAS  Google Scholar 

  56. Li Y, Mi L, Wang H, Li Y, Liang J (2019) Design, electron transfer process, and opto-electronic property of solar cell using triphenylamine-based D-π-A architectures. Materials 12(1):193

    CAS  PubMed Central  Google Scholar 

  57. Mishra R, Regar R, Singh V, Panini P, Singhal R, Keshtov M, Sharma GD, Sankar J (2018) Modulation of the power conversion efficiency of organic solar cells via architectural variation of a promising non-fullerene acceptor. J Mater Chem A 6(2):574–582

    CAS  Google Scholar 

  58. Irfan M, Iqbal J, Sadaf S, Eliasson B, Rana UA, Ud-din Khan S, Ayub K (2017) Design of donor–acceptor–donor (D–A–D) type small molecule donor materials with efficient photovoltaic parameters. Int J Quantum Chem 117(10):e25363

    Google Scholar 

  59. Li Y (2012) Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res 45(5):723–733

    CAS  PubMed  Google Scholar 

  60. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794

    CAS  Google Scholar 

  61. Xiao B, Zhao Y, Tang A, Wang H, Yang J, Zhou E (2017) PTB7-Th based organic solar cell with a high Voc of 1.05 V by modulating the LUMO energy level of benzotriazole-containing non-fullerene acceptor. Sci Bull 62(18):1275–1282

    CAS  Google Scholar 

  62. Adnan M, Iqbal J, BiBi S, Hussain R, Akhtar MN, Rashid MA, Eliasson B, Ayub K (2017) Fine tuning the optoelectronic properties of triphenylamine based donor molecules for organic solar cells. Z Phys Chem 231(6):1127–1139

    CAS  Google Scholar 

  63. Köse ME (2012) Evaluation of acceptor strength in thiophene coupled donor–acceptor chromophores for optimal design of organic photovoltaic materials. J Phys Chem A 116(51):12503–12509

    PubMed  Google Scholar 

  64. Dkhissi A (2011) Excitons in organic semiconductors. Synth Met 161(13–14):1441–1443

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riaz Hussain or Muhammad Usman Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The detailed DFT and TDDFT calculations have been performed on novel indenothiophene-based high-performance NFSMAs.

• Five acceptor molecules (M1–M5) with strong donor moiety indenothiophene linked to five different end-capped group acceptor moieties based on newly synthesized AIDIC molecule were designed and studied.

• The electronic, optical, and photovoltaic properties were studied.

• The studied compounds are proposed to be better entrants for OSC applications.

• This work may provide useful means in designing of new photovoltaic compounds.

Electronic supplementary material

ESM 1

Optimized Cartesian coordinates of our studied compounds are available in the Supporting Information file. (DOCX 213 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, Z., Hussain, R., Khan, M.U. et al. Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J Mol Model 26, 137 (2020). https://doi.org/10.1007/s00894-020-04386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04386-5

Keywords

Navigation