Skip to main content
Log in

Carbonation of high-calcium lime mortars containing cactus mucilage as additive: a spectroscopic approach

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lime mortar is one of the oldest building materials. In Mexico, ingredients added to it to enhance its properties may include cactus mucilage, among others. We have evaluated the effect of adding, at two different concentrations, mucilage from Opuntia ficus-indica (prickly pear), Acanthocereous tetragonus (fairy castle cactus), and Hylocereus undatus (pitahaya or dragon fruit) in the accelerated carbonation of hydrated lime. The carbonation kinetics were followed by spectroscopic techniques such as Fourier transform mid-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The results showed that mucilage promoted carbonation, functioning as a positive catalyst. Analysis of the infrared (IR) absorption corresponding to the in-plane asymmetric stretching \({v}_{3}\) of the \({\text{C}}{\text{O}}_{3}^{2-}\) anion indicated that the carbonation rate increased with the percentage of mucilage, being directly dependent on the concentration of Opuntia and Acanthocereous mucilage at both concentration levels tested. SEM observations confirmed that the inclusion of mucilage promoted the creation of the aragonite polymorph of calcium carbonate (CaCO3).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rampazzi L, Colombini MP, Conti C et al (2016) Technology of medieval mortars: an investigation into the use of organic additives. Archaeometry 58:115–130. https://doi.org/10.1111/arcm.12155

    Article  CAS  Google Scholar 

  2. Liberotti G, Daneels A (2012) Adobes en arquitectura monumental: Análisis químico-físicos, arqueología y reconstrucción 3D para determinar las técnicas constructivas en los sitios de La Joya (México) y Arslantepe (Turquía). Boletin de la Soc Geol Mex 64:79–89

    Article  Google Scholar 

  3. Kita Y, Daneels A, de Vivar A (2013) Chemical analysis to identify organic compounds in pre-Columbian monumental earthen architecture. Online J Sci Technol 3:39–45

    Google Scholar 

  4. Martínez-Camacho F, Vazquez-Negrete J, Lima E et al (2008) Texture of nopal treated adobe: restoring Nuestra Señora del Pilar mission. J Archaeol Sci 35:1125–1133. https://doi.org/10.1016/j.jas.2007.10.019

    Article  Google Scholar 

  5. Pérez NA, Charua D, Fernández S (2015) Extracción y purificación del mucílago y goma de nopal para uso en conservación. In: Pérez Y, Torre G de la (eds) Estudios sobre conservación, restauración y museología. ENCRyM_INAH, pp 156–166

  6. Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohyd Polym 92:1685–1699. https://doi.org/10.1016/j.carbpol.2012.11.021

    Article  CAS  Google Scholar 

  7. Trachtenberg S, Mayer AM (1981) Composition and properties of Opuntia ficus-indica mucilage. Phytochemistry 20:2665–2668. https://doi.org/10.1016/0031-9422(81)85263-6

    Article  CAS  Google Scholar 

  8. Cano-Barrita PF de J, León-Martínez FM (2016) Biopolymers with viscosity-enhancing properties for concrete. In: Pacheco-Torgal F, Ivanov V,  Karak N, Jonkers H (eds) Biopolymers and biotech admixtures for eco-efficient construction materials. Woodhead Publishing, pp 221–252

  9. Sepúlveda E, Sáenz C, Aliaga E, Aceituno C (2007) Extraction and characterization of mucilage in Opuntia spp. J Arid Environ 68:534–545. https://doi.org/10.1016/j.jaridenv.2006.08.001

    Article  Google Scholar 

  10. McGarvie D, Parolis H (1979) The mucilage of Opuntia ficus-indica. Carbohyd Res 69:171–179. https://doi.org/10.1016/S0008-6215(00)85762-6

    Article  CAS  Google Scholar 

  11. Monje PV, Baran EJ (2004) Complex biomineralization pattern in cactaceae. J Plant Physiol 161:121–123. https://doi.org/10.1078/0176-1617-01049

    Article  CAS  Google Scholar 

  12. He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174. https://doi.org/10.1016/j.tplants.2013.11.002

    Article  CAS  Google Scholar 

  13. Cardenas A, Arguelles WM, Goycoolea FM (1998) On the possible role of Opuntia ficus-indica mucilage in lime mortar performance in the protection of historical buildings. J Prof Assoc Cactus Dev 3:64–71

    Google Scholar 

  14. Chandra S, Flodin P (1989) Interaction of Polymer with Calcium Hydroxide and Calcium Trisilicate. Spec Publ 119:263–272

    CAS  Google Scholar 

  15. Chandra S, Eklund L, Villarreal RR (1998) Use of cactus in mortars and concrete. Cem Concr Res 28:41–51. https://doi.org/10.1016/S0008-8846(97)00254-8

    Article  CAS  Google Scholar 

  16. Ravi R, Selvaraj T, Sekar SK (2016) Characterization of hydraulic lime mortar containing opuntia ficus-indica as a bio-admixture for restoration applications. Int J Archit Heritage 10:714–725. https://doi.org/10.1080/15583058.2015.1109735

    Article  Google Scholar 

  17. Ventolà L, Vendrell M, Giraldez P, Merino L (2011) Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr Build Mater 25:3313–3318. https://doi.org/10.1016/j.conbuildmat.2011.03.020

    Article  Google Scholar 

  18. ASTM C305-13 (2013) Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM lnternational pp. 1–3. https://doi.org/10.1520/C0305-13.2

  19. ASTM C1437–13 (2013) Standard Test Method for Flow of Hydraulic Cement Mortar: C1437–01 ASTM International pp. 7–8 https://doi.org/10.1520/C1437-13.2

  20. ASTM C230–13 (2013) Standard Specification for Flow Table for Use in Tests of Hydraulic Cement 1ASTM lnternational pp. 4–9https://doi.org/10.1520/C0230

  21. Siva T, Muralidharan S, Sathiyanarayanan S et al (2017) Enhanced Polymer Induced Precipitation of Polymorphous in Calcium Carbonate: Calcite Aragonite Vaterite Phases. J Inorg Organomet Polym Mater 27:770–778. https://doi.org/10.1007/s10904-017-0520-1

    Article  CAS  Google Scholar 

  22. Ni M, Ratner BD (2008) Differentiation of Calcium Carbonate Polymorphs by Surface Analysis Techniques - An XPS and TOF-SIMS study. Surf Interface Anal 40:1356–1361. https://doi.org/10.1002/sia.2904

    Article  CAS  Google Scholar 

  23. Chakrabarty D, Mahapatra S (1999) Aragonite crystals with unconventional morphologies. J Mater Chem 9:2953–2957. https://doi.org/10.1039/a905407c

    Article  CAS  Google Scholar 

  24. Xu B, Poduska KM (2014) Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys Chem Chem Phys 16:17634–17639. https://doi.org/10.1039/c4cp01772b

    Article  CAS  Google Scholar 

  25. Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3:265–271. https://doi.org/10.1039/C0NR00589D

    Article  CAS  Google Scholar 

  26. Tremel W, Küther J, Balz M et al (2007) Template Surfaces for the Formation of Calcium Carbonate. In: Behrens P, Bäuerlein E (eds) Handbook of Biomineralization: Biological Aspects and Structure Formation. Wiley-VCH, Weinheim, pp 209–232

    Chapter  Google Scholar 

  27. Declet A, Reyes E, Suárez OM (2016) Calcium carbonate precipitation: A review of the carbonate crystallization process and applications in bioinspired composites. Rev Adv Mater Sci 44:87–107

    CAS  Google Scholar 

  28. Tobler DJ, Rodriguez Blanco JD, Dideriksen K et al (2014) The effect of aspartic acid and glycine on amorphous calcium carbonate (ACC) structure, stability and crystallization. Proc Earth Planet Sci 10:143–148. https://doi.org/10.1016/j.proeps.2014.08.047

    Article  CAS  Google Scholar 

  29. Tobler DJ, Rodriguez-Blanco JD, Dideriksen K et al (2015) Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization. Adv Func Mater 25:3081–3090. https://doi.org/10.1002/adfm.201500400

    Article  CAS  Google Scholar 

  30. Wada N, Kanamura K, Umegaki T (2001) Effects of Carboxylic Acids on the Crystallization of Calcium Carbonate. J Colloid Interface Sci 233:65–72. https://doi.org/10.1006/JCIS.2000.7215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Bio. Hermes Lustre-Sánchez and Dra. Yolanda Donají Ortiz-Hernández for providing the cactus stems used in the mucilage extraction. Special acknowledgement is given to Professor Robert Leavitt for editing the response to reviewer’s comments.

Funding

The financial funding was provided by the SIP of the Instituto Politécnico Nacional of Mexico through the projects ID numbers 20160926 and 20170670.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. León-Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Martínez, F.M., Cano-Barrita, P.F.d.J., Castellanos, F. et al. Carbonation of high-calcium lime mortars containing cactus mucilage as additive: a spectroscopic approach. J Mater Sci 56, 3778–3789 (2021). https://doi.org/10.1007/s10853-020-05514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05514-5

Navigation