Skip to main content

Advertisement

Log in

Effects of the curing atmosphere on the structures and properties of polybenzoxazine films

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of four different curing atmospheres, i.e., static air, circulating air, nitrogen and vacuum, on the polymerization mechanism, chemical structure, hydrogen bonding, mechanical property, thermal property, water contact angle, etc., of the polybenzoxazine films were systematically studied. It was found that curing in air caused more oxidation and decomposition, generating more benzoquinones, carbonyl groups and iminium ions in the resultant polybenzoxazine films. Consequently, the films cured in air were less cross-linked, darker in color and more brittle. The films cured in static air (SA) showed tensile strength and elongation at break of 12.59 MPa and 2.16%, respectively, which were 61.24 MPa and 2.74% lower than those of the films cured in nitrogen (N2). Moreover, it was demonstrated that more intramolecular rigid –OH···N hydrogen bonding was formed in the films cured in air, which was believed to be the fundamental reason for the lower chemical cross-linking density and poorer toughness. Nevertheless, these films showed higher char yield due to the formation of more thermally stable groups in oxidation process. Further investigation on chemical structures, hydrogen bonding and water contact angles of the upper and lower surfaces of the films revealed that the upper surfaces were more inclined to be oxidized and decomposed during curing and more intramolecular hydrogen bonding (–OH···N HB) was formed on upper surfaces, which led to increased water contact angles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ning X, Ishida H (1994) Phenolic materials via ring-opening polymerization: synthesis and characterization of Bisphenol A based benzoxazine and their polymers. J Polym Sci Part A Polym Chem 32(6):1121–1129

    CAS  Google Scholar 

  2. Ishida H, Krus CM (1998) Synthesis and characterization of structurally uniform model oligomers of polybenzoxazine. Macromolecules 31(8):2409–2418

    CAS  Google Scholar 

  3. Shen SB, Ishida H (1999) Dynamic mechanical and thermal characterization of high-performance polybenzoxazines. J Polym Sci Part B 37(23):3257–3268

    CAS  Google Scholar 

  4. Agag T, Jin L, Ishida H (2009) A new synthetic approach for difficult benzoxazines: preparation and polymerization of 4,4′-diaminodiphenyl sulfone-based benzoxazine monomer. Polymer 50(25):5940–5944

    CAS  Google Scholar 

  5. Dogan Demir K, Kiskan B, Yagci Y (2011) Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction. Macromolecules 44(7):1801–1807.

  6. Ran QC, Yi G (2015) Concerted reactions of aldehyde groups during polymerization of an aldehyde-functional benzoxazine. J Polym Sci Part A Polym Chem 49(7):1671–1677

    Google Scholar 

  7. Šebenik U, Krajnc M (2015) Synthesis, curing kinetics, thermal and mechanical behavior of novel cardanol-based benzoxazines. Polymer 76:203–212

    Google Scholar 

  8. Zhang S, Yang P, Bai Y, Zhou T, Zhu R, Gu Y (2017) Polybenzoxazines: thermal responsiveness of hydrogen bonds and application as latent curing agents for thermosetting resins. ACS Omega 2(4):1529–1534

    CAS  Google Scholar 

  9. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32(11):1344–1391

    CAS  Google Scholar 

  10. Nair CPR (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29(5):401–498

    CAS  Google Scholar 

  11. Kiskan B (2018) Adapting benzoxazine chemistry for unconventional applications. React Funct Polym 129:76–88

    CAS  Google Scholar 

  12. Chou CI, Liu YL (2010) High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain. J Polym Sci Part A Polym Chem 46(19):6509–6517

    Google Scholar 

  13. He X-Y, Wang J, Wang Y-D, Liu C-J, Liu W-B, Yang L (2013) Synthesis, thermal properties and curing kinetics of fluorene diamine-based benzoxazine containing ester groups. Eur Polym J 49(9):2759–2768

    CAS  Google Scholar 

  14. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P (2016) High performance bio-based benzoxazine networks from resorcinol and hydroquinone. Eur Polym J 75:486–494

    CAS  Google Scholar 

  15. Zhang K, Yu X (2018) Catalyst-free and low-temperature terpolymerization in a single-component benzoxazine resin containing both norbornene and acetylene functionalities. Macromolecules 51(16):6524–6533

    CAS  Google Scholar 

  16. Su YC, Chang FC (2003) Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer 44(26):7989–7996

    CAS  Google Scholar 

  17. Su Y-C, Chen W-C, Ou K-L, Chang F-C (2005) Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine co-polymers. Polymer 46(11):3758–3766

    CAS  Google Scholar 

  18. Lin CH, Huang SJ, Wang PJ, Lin HT, Dai SA (2012) Miscibility, microstructure, and thermal and dielectric properties of reactive blends of dicyanate ester and diamine-based benzoxazine. Macromolecules 45(18):7461–7466

    CAS  Google Scholar 

  19. Zhang S, Yan Y, Li X, Fan H, Ran Q, Fu Q, Gu Y (2018) A novel ultra low-k nanocomposites of benzoxazinyl modified polyhedral oligomeric silsesquioxane and cyanate ester. Eur Polym J 103:124–132

    CAS  Google Scholar 

  20. Kobzar YL, Tkachenko IM, Lobko EV, Shekera OV, Syrovets AP, Shevchenko VV (2017) Low dielectric material from novel core-fluorinated polybenzoxazine. Mendeleev Commun 27(1):41–43

    CAS  Google Scholar 

  21. Ilango K, Prabunathan P, Satheeshkumar E, Manohar P (2017) Design of low dielectric constant polybenzoxazine nanocomposite using mesoporous mullite. High Perform Polym 29(2):141–150

    CAS  Google Scholar 

  22. Rimdusit S, Lohwerathama M, Hemvichian K, Kasemsiri P, Dueramae I (2013) Shape memory polymers from benzoxazine-modified epoxy. Smart Mater Struct 22(7):075033

    Google Scholar 

  23. Zhang S, Ran Q, Fu Q, Gu Y (2018) Preparation of transparent and flexible shape memory polybenzoxazine film through chemical structure manipulation and hydrogen bonding control. Macromolecules 51(17):6561–6570

    CAS  Google Scholar 

  24. Taskin OS, Kiskan B, Yagci Y (2013) Polybenzoxazine precursors as self-healing agents for polysulfones. Macromolecules 46(22):8773–8778

    CAS  Google Scholar 

  25. Sharma P, Shukla S, Lochab B, Kumar D, Kumar Roy P (2014) Microencapsulated cardanol derived benzoxazines for self-healing applications. Mater Lett 133:266–268

  26. Wan L, Wang J, Xie L, Sun Y, Li K (2014) Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl Mater Interfaces 6(17):15583–15596

    CAS  Google Scholar 

  27. Alhwaige AA, Ishida H, Qutubuddin S (2016) Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites. ACS Sustain Chem Eng 4(3):1286–1295

    CAS  Google Scholar 

  28. Wu J-Y, Mohamed MG, Kuo S-W (2017) Directly synthesized nitrogen-doped microporous carbons from polybenzoxazine resins for carbon dioxide capture. Polym Chem 8(36):5481–5489

    CAS  Google Scholar 

  29. Wang C, Sun J, Liu X, Sudo A, Endo T (2012) Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem 14(10):2799–2806

    CAS  Google Scholar 

  30. Rao BS, Palanisamy A (2011) Monofunctional benzoxazine from cardanol for bio-composite applications. React Funct Polym 71(2):148–154

    CAS  Google Scholar 

  31. Lligadas G, Tüzün A, Ronda JC, Galià M, Cádiz V (2014) Polybenzoxazines: new players in the bio-based polymer arena. Polym Chem 5(23):6636–6644

    CAS  Google Scholar 

  32. Zhang K, Han M, Liu Y, Froimowicz P (2019) Design and synthesis of bio-based high-performance trioxazine benzoxazine resin via natural renewable resources. ACS Sustain Chem Eng 7(10):9399–9407

    CAS  Google Scholar 

  33. Zhang L, Yang Y, Chen Y, Lu H (2017) Cardanol-capped main-chain benzoxazine oligomers for resin transfer molding. Eur Polym J 93:284–293

    CAS  Google Scholar 

  34. Plengudomkit R, Okhawilai M, Rimdusit S (2016) Highly filled graphene-benzoxazine composites as bipolar plates in fuel cell applications. Polym Compos 37(6):1715–1727

    CAS  Google Scholar 

  35. Patil DM, Phalak GA, Mhaske S (2017) Enhancement of anti-corrosive performances of cardanol based amine functional benzoxazine resin by copolymerizing with epoxy resins. Prog Org Coat 105:18–28

    CAS  Google Scholar 

  36. Renaud A, Poorteman M, Escobar J, Dumas L, Bonnaud L, Dubois P, Olivier M-G (2017) A new corrosion protection approach for aeronautical applications combining a Phenol-paraPhenyleneDiAmine benzoxazine resin applied on sulfo-tartaric anodized aluminum. Prog Org Coat 112:278–287

    CAS  Google Scholar 

  37. Wang YX, Ishida H (1999) Cationic ring-opening polymerization of benzoxazines. Polymer 40(16):4563–4570

    CAS  Google Scholar 

  38. Chutayothin P, Ishida H (2010) Cationic ring-opening polymerization of 1,3-benzoxazines: mechanistic study using model compounds. Macromolecules 43(10):4562–4572

    CAS  Google Scholar 

  39. Wang YX, Ishida H (2000) Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2h-1,3-benzoxazines. Macromolecules 33(8):2839–2847

    CAS  Google Scholar 

  40. Wang MW, Jeng RJ, Lin CH (2015) Study on the ring-opening polymerization of benzoxazine through multisubstituted polybenzoxazine precursors. Macromolecules 48(3):530–535

    CAS  Google Scholar 

  41. Ishida H, Sanders DP (2000a) Regioselectivity and network structure of difunctional alkyl-substituted aromatic amine-based polybenzoxazines. Macromolecules 33(22):8149–8157

    CAS  Google Scholar 

  42. Sudo A, Kudoh R, Nakayama H, Arima K, Endo T (2008) Selective formation of poly(N, O-acetal) by polymerization of 1,3-benzoxazine and its main chain rearrangement. Macromolecules 41(23):9030–9034

    CAS  Google Scholar 

  43. Ran Q-C, Zhang D-X, Zhu R-Q, Gu Y (2012a) The structural transformation during polymerization of benzoxazine/FeCl3 and the effect on the thermal stability. Polymer 53(19):4119–4127

    CAS  Google Scholar 

  44. Chao L, Shen D, SebastiáN RMA, Marquet J, SchöNfeld R (2011) Mechanistic studies on ring-opening polymerization of benzoxazines: a mechanistically based catalyst design. Macromolecules 44(12):4616–4622

    Google Scholar 

  45. Zhang S, Ran Q, Fu Q, Gu Y (2019a) Controlled polymerization of 3,4-dihydro-2H-1,3-benzoxazine and its properties tailored by Lewis acids. React Funct Polym 139:75–84

    CAS  Google Scholar 

  46. Zhang S, Ran Q, Fu Q, Gu Y (2019b) Thermal responsiveness of hydrogen bonding and dielectric property of polybenzoxazines with different Mannich bridge structures. Polymer 175:302–309

    CAS  Google Scholar 

  47. Han L, Salum ML, Zhang K, Froimowicz P, Ishida H (2017) Intrinsic self‐initiating thermal ring‐opening polymerization of 1,3‐benzoxazines without the influence of impurities using very high purity crystals. J Polym Sci Part A Polym Chem 55(20):3434–3445

  48. Macko J, Ishida H (2000) Behavior of a bisphenol-A-based polybenzoxazine exposed to ultraviolet radiation. J Polym Sci Part B Polym Phys 38:2687–2701

    CAS  Google Scholar 

  49. Ishida H, Hong YL (1997) A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules 30(4):1099–1106

    CAS  Google Scholar 

  50. Kim H-D, Ishida H (2002) A study on hydrogen-bonded network structure of polybenzoxazines. J Phys Chem A 106(14):3271–3280

    CAS  Google Scholar 

  51. Yang P, Wang X, Fan H, Gu Y (2013) Effect of hydrogen bonds on the modulus of bulk polybenzoxazines in the glassy state. Phys Chem Chem Phys 15(37):15333–15338

    CAS  Google Scholar 

  52. Wirasate S, Dhumrongvaraporn S, Allen DJ, Ishida H (2015) Molecular origin of unusual physical and mechanical properties in novel phenolic materials based on benzoxazine chemistry. J Appl Polym Sci 70(7):1299–1306

    Google Scholar 

  53. Bai Y, Yang P, Song Y, Zhu R, Gu Y (2016) Effect of hydrogen bonds on the polymerization of benzoxazines: influence and control. RSC Adv 6(51):45630–45635

    CAS  Google Scholar 

  54. Wang B, Yang P, Li Y, He Y, Zhu R, Gu Y (2017) Blends of polybenzoxazine/poly (acrylic acid): hydrogen bonds and enhanced performances. Polym Int 66:1159–1163

    CAS  Google Scholar 

  55. Su Y-C, Kuo S-W, Yei D-R, Xu H, Chang F-C (2003) Thermal properties and hydrogen bonding in polymer blend of polybenzoxazine/poly (N-vinyl-2-pyrrolidone). Polymer 44(8):2187–2191

    CAS  Google Scholar 

  56. Li X, Yi G (2011) The co-curing process of a benzoxazine-cyanate system and the thermal properties of the copolymers. Polym Chem 2(12):2778–2781

    CAS  Google Scholar 

  57. Zhuang Y, Gu Y (2013) Poly(benzoxazole-amide-imide) copolymers for interlevel dielectrics: interchain hydrogen bonding, molecular arrangement and properties. J Polym Res 20(6):1–8

    Google Scholar 

  58. Wang X, Zong L, Han J, Wang J, Liu C, Jian X (2017) Toughening and reinforcing of benzoxazine resins using a new hyperbranched polyether epoxy as a non-phase-separation modifier. Polymer 121:217–227

    Google Scholar 

  59. Liu Y, Gao S, Gong X, Xue Q, Lu Z (2019) Benzoxazine-epoxy thermosets with smectic phase structures for high thermal conductive materials. Liquid Cryst 46:1–10

    CAS  Google Scholar 

  60. Zeng K, Huang J, Ren J, Ran Q (2019) Curing reaction of benzoxazine under high pressure and the effect on thermal resistance of polybenzoxazine. Macromol Chem Phys 220(1):1800340

    Google Scholar 

  61. Ran Q-C, Zhang D-X, Zhu R-Q, Gu Y (2012b) The structural transformation during polymerization of benzoxazine/FeCl 3 and the effect on the thermal stability. Polymer 53(19):4119–4127

    CAS  Google Scholar 

  62. Liu Y, Wang R, An Q, Su X, Li C, Shen S, Huo G (2017) The F··· H hydrogen bonding effect on the dynamic mechanical and shape-memory properties of a fluorine-containing polybenzoxazine. Macromol Chem Phys 218(15):1700079

    Google Scholar 

  63. Lin CH, Chang SL, Shen TY, Shih YS, Lin HT, Wang CF (2012) Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym Chem 3(4):935–945

    CAS  Google Scholar 

  64. Treloar RGL (1958) The physics of rubber elasticity. 2nd ed, The Clarendon Press

  65. Ishida H, Allen DJ (1996) Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 37(20):4487–4495

    CAS  Google Scholar 

  66. Ishida H, Sanders DP (2000b) Improved thermal and mechanical properties of polybenzoxazines based on alkyl-substituted aromatic amines. J Polym Sci Part B Polym Phys 38(24):3289–3301

    CAS  Google Scholar 

  67. Laobuthee A, Chirachanchai S, Ishida H, Tashiro K (2001) Asymmetric mono-oxazine: an inevitable product from Mannich reaction of benzoxazine dimers. J Am Chem Soc 123(41):9947–9955

    CAS  Google Scholar 

  68. Chirachanchai S, Laobuthee A, Phongtamrug S (2009) Self termination of ring opening reaction of p-substituted phenol-based benzoxazines: an obstructive effect via intramolecular hydrogen bond. J Heterocycl Chem 46(4):714–721

    CAS  Google Scholar 

  69. Bai Y, Yang P, Wang T, Gu Y (2017) Hydrogen bonds in the blends of polybenzoxazines and N, N′-(pyridine-2, 6-diyl) diacetamide: Inter-or intra-molecular hydrogen bonds? J Mol Struct 1147:26–32

    CAS  Google Scholar 

  70. Alhwaige AA, Ishida H, Qutubuddin S (2019) Poly(benzoxazine-f-chitosan) films: the role of aldehyde neighboring groups on chemical interaction of benzoxazine precursors with chitosan. Carbohydr Polym 209:122–129

    CAS  Google Scholar 

  71. Chih-Feng W, Yi-Ting W, Pao-Hsiang T, Shiao-Wei K, Chun-Hung L, Yuung-Ching S, Feng-Chih C (2006) Stable superhydrophobic polybenzoxazine surfaces over a wide pH range. Langmuir ACS J Surf Colloids 22(20):8289–8292

    Google Scholar 

  72. Chih-Feng W, Yi-Che S, Shiao-Wie K, Chih-Feng H, Yuung-Ching S, Feng-Chih C (2010) Low-surface-free-energy materials based on polybenzoxazines. Angew Chem Int Ed 45(14):2248–2251

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Project no. 21104048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichao Ran.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Ran, Q., Zhang, X. et al. Effects of the curing atmosphere on the structures and properties of polybenzoxazine films. J Mater Sci 56, 2748–2762 (2021). https://doi.org/10.1007/s10853-020-05425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05425-5

Navigation