Skip to main content

Advertisement

Log in

Rutile TiO2–Pd Photocatalysts for Hydrogen Gas Production from Methanol Reforming

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Palladium/rutile TiO2 has been explored as a photocatalyst for hydrogen gas production from methanol photoreforming in the liquid and gas phase reactions, and it is compared with similar catalysts prepared on P25 titania. Rutile makes an excellent photoactive support when used for the gas phase reaction, but is not effective in the liquid phase. By exploring the effect of Pd loading on the rate of hydrogen production, an induction time is observed at high Pd content. Reduction of the catalysts prior to the reaction reduces Pd nanoparticles size and improves the catalyst activity. Investigation of the activity in the liquid phase and in the gas phase reveals that the amount of adsorbed methanol on the catalyst surface is crucial to enhance the interface charge carrier transfer that leads to high activity in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Bahruji H, Bowker M, Davies PR et al (2011) New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Appl Catal B 107:205–209

    Article  CAS  Google Scholar 

  2. Joo JB, Dillon R, Lee I et al (2014) Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2. Proc Natl Acad Sci 111:7942–7947

    Article  CAS  Google Scholar 

  3. Park H, Park Y, Kim W et al (2012) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol, C 15:1–20

    Article  Google Scholar 

  4. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  5. Bickley RI, Gonzalez-Carreno T, Lees JS et al (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92:178–190

    Article  CAS  Google Scholar 

  6. Zhang J, Xu Q, Feng Z et al (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 47:1766–1769

    Article  CAS  Google Scholar 

  7. Hurum DC, Agrios AG, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549

    Article  CAS  Google Scholar 

  8. Connelly KA, Idriss H (2012) The photoreaction of TiO2 and Au/TiO2 single crystal and powder surfaces with organic adsorbates. Emphasis on hydrogen production from renewables. Green Chem 14:260–280

    Article  CAS  Google Scholar 

  9. Bashir S, Wahab AK, Idriss H (2014) Synergism and photocatalytic water splitting to hydrogen over M/TiO2 catalysts: effect of initial particle size of TiO2. Catal Today 240:242–247

    Article  Google Scholar 

  10. De Haart LGJ, Blasse G (1986) The observation of exciton emission from rutile single crystals. J Solid State Chem 61:135–136

    Article  Google Scholar 

  11. Fernández I, Cremades A, Piqueras J (2005) Cathodoluminescence study of defects in deformed (110) and (100) surfaces of TiO 2 single crystals. Semicond Sci Technol 20:239

    Article  Google Scholar 

  12. Ghosh AK, Wakim FG, Addiss RR Jr (1969) Photoelectronic processes in rutile. Phys Rev 184:979–988

    Article  CAS  Google Scholar 

  13. Belver C, López-Muñoz MJ, Coronado JM et al (2003) Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors. Appl Catal B 46:497–509

    Article  CAS  Google Scholar 

  14. Kim KS, Gossmann AF, Winograd N (1974) X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. Anal Chem 46:197–200

    Article  CAS  Google Scholar 

  15. Wang H-F, Kaden WE, Dowler R et al (2012) Model oxide-supported metal catalysts—comparison of ultrahigh vacuum and solution based preparation of Pd nanoparticles on a single-crystalline oxide substrate. Phys Chem Chem Phys 14:11525–11533

    Article  CAS  Google Scholar 

  16. Shafeev GA, Themlin JM, Bellard L et al (1996) Enhanced adherence of area-selective electroless metal plating on insulators. J Vac Sci & Technol A 14:319–326

    Article  CAS  Google Scholar 

  17. Tura JM, Regull P, Victori L et al (1988) XPS and IR (ATR) analysis of Pd oxide films obtained by electrochemical methods. Surf Interface Anal 11:447–449

    Article  CAS  Google Scholar 

  18. Powell CJ (2012) Recommended auger parameters for 42 elemental solids. J Electron Spectrosc Relat Phenom 185:1–3

    Article  CAS  Google Scholar 

  19. Jenks CJ, Chang SL, Anderegg JW et al (1996) Photoelectron spectra of an Al_{70}Pd_{21}Mn_{9} quasicrystal and the cubic alloy Al_{60}Pd_{25}Mn_{15}. Phys Rev B 54:6301–6306

    Article  CAS  Google Scholar 

  20. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105:11439–11446

    Article  CAS  Google Scholar 

  21. Schwartz WR, Pfefferle LD (2012) Combustion of methane over palladium-based catalysts: support interactions. J Phys Chem C 116:8571–8578

    Article  CAS  Google Scholar 

  22. Ciuparu D, Pfefferle L (2002) Contributions of lattice oxygen to the overall oxygen balance during methane combustion over PdO-based catalysts. Catal Today 77:167–179

    Article  CAS  Google Scholar 

  23. Müller CA, Maciejewski M, Koeppel RA et al (1996) Role of lattice oxygen in the combustion of methane over PdO/ZrO2: combined pulse TG/DTA and MS study with 18O-labeled catalyst. J Phys Chem 100:20006–20014

    Article  Google Scholar 

  24. Mars P, Van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 3(1):41–59

    Article  CAS  Google Scholar 

  25. Davis JL, Barteau MA (1990) Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111). Surf Sci 235:235–248

    Article  CAS  Google Scholar 

  26. Al-Mazroai LS, Bowker M, Davies P et al (2007) The photocatalytic reforming of methanol. Catal Today 122:46–50

    Article  CAS  Google Scholar 

  27. Chen J, Ollis DF, Rulkens WH et al (1999) Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): photocatalytic mechanisms. Water Res 33:669–676

    Article  CAS  Google Scholar 

  28. Bahruji H, Bowker M, Davies PR et al (2010) Sustainable H2 gas production by photocatalysis. J Photochem Photobiol, A 216:115–118

    Article  CAS  Google Scholar 

  29. Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  30. Li Q, Zhang J, Jin Z et al (2013) A novel TiO2 with a large amount of bulk intrinsic defects—visible-light-responded photocatalytic activity induced by foreign trap. Chin Sci Bull 58:1675–1681

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Bahruji or M. Bowker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahruji, H., Bowker, M., Davies, P.R. et al. Rutile TiO2–Pd Photocatalysts for Hydrogen Gas Production from Methanol Reforming. Top Catal 58, 70–76 (2015). https://doi.org/10.1007/s11244-014-0346-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0346-9

Keywords

Navigation