Skip to main content
Log in

Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) have become a potential material for biosensing, drug delivery, and bioimaging because of their strong fluorescence, for which they are referred to as fluorescent carbon dots. CDs have drawn significant attention as a new class of carbonaceous nanomaterials with accelerating applications in varying different technologies. This attention is mainly based on a multitude of appealing properties of CDs, such as high hydrophilicity, biodegradability, biocompatibility, chemical stability, and ease of surface modification, together with their unique optic properties. In this review, CDs were classified and evaluated based on the difference in precursors and preparation methods. The synthetic methods of CDs were summarized, and their luminescence mechanism was analyzed. The applications of CDs in biosensing, drug delivery, energy, and bioimaging were also discussed. The issues and challenges of CDs were analyzed for their further development, with specific emphasis on the toxicity profiles or lack thereof, especially that of cytotoxicity and long-term genotoxicity developed secondary to nanotoxic effects, of carbon dot-based systems. Additional research in toxicity is sure to lead to improved baseline nanosafety statistics for CDs and will be a crucial determinant in the adoption of CDs into many fields across all scientific disciplines, as well as indirectly assist in the development of more efficient and cost-effective technologies. Suggestions for the development of the concepts contemplated herein were also provided, along with additional insight into the controversy concerning the phenomenon of emission and the upconverted photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

CDs:

Carbon dots

CDots:

Carbon dots

CQDs:

Carbon dots

PL:

Photoluminescence

QDs:

Semi-metal-based quantum dots

LED:

Light-emitting diode

COOH:

Carboxyl group

OH:

Hydroxyl group

SWCNT:

Single-walled carbon nanotubes

MWCNT:

Multi-walled carbon nanotubes

PEG:

Polyethylene glycol

PPEI-EI:

Polypropyleneethyleneimine-co-ethylenimine

NMR:

Nuclear magnetic resonance

AFM:

Atomic force microscopy

TEM:

Transmission electron microscope

FT-IR:

Fourier-transform infrared spectroscopy

XRD:

X-ray diffraction

UV:

Ultraviolet

HOMO:

Highest occupied molecule orbital

LUMO:

Lowest unoccupied molecular orbital

CNTs:

Carbon nanotubes

DSSC:

Dye-sensitized solar cells

PSC:

Perovskite solar cells

QDSC:

Quantum dot solar cells

OSC:

Organic solar cells

TiO2 :

Titanium dioxide

CD–RhB–TiO2 :

CD-doped dye/semiconductor complex system

J sc :

Short circuit current density

V oc :

Open circuit voltage

V :

Volt

PCE:

Power conversion efficiency

FF:

Fill factor

N719:

Ruthenium dye

PEG-m-CQDs:

Polyethylene glycol-modified carbon quantum dots

ETL:

Electron transfer layer

HTL:

Hole transfer layer

HTM:

Hole transfer material

SnO2 :

Tin(IV) oxide

SCs:

Supercapacitors

GO:

Graphene oxide

rGO:

Reduced graphene oxide

MnO2 :

Manganese dioxide

PPy:

Polypyrrole

PANI:

Polyaniline

CDs/PEI/NB:

Conjugated CDs with polyethyleneimine (PEI) and Nile blue (NB)

Hg:

Mercury

NB:

Nile blue

TPF:

Two-photon fluorescence

Cu2+ :

Copper

S2− :

Sulfide

PEI@CDs:

Polymeric ethylene imine functionalized photoluminescent carbon dots

BrO3 :

Bromate

Au@CQDs:

Gold nanoparticles @ carbon quantum dots nanocomposites

PVA:

Polyvinyl alcohol

PCDs:

Phosphorus-containing carbon dots

L929:

Murine fibroblast cell line

Gd:

Gadolinium

Gd@CQDs:

Gd3+ doped magneto-fluorescent carbon dots

FA-Gd@CQDs:

CDs conjugated with folic acid

MCF-7:

Breast cancer cell

MDA-MB-231:

Breast cancer cell

BT-549:

Human breast cancer cell

E@CDs:

Element-doped carbon dots

SH-SY5Y:

Labeled neuronal cells

DOX:

Doxorubicin

ROS:

Reactive oxygen

Spd-CQDs:

Spermidine-coated fluorescent carbon quantum dots

MDR:

Non-multidrug-resistant bacteria

MRSA:

Methicillin-resistant S. aureus

E. coli :

Escherichia coli

S. aureus :

Staphylococcus aureus

B. subtilis :

Bacillus subtilis

P. aeruginous :

Pseudomonas aeruginosa

AMP:

Ampicillin

AREC:

Ampicillin-resistant Escherichia coli

KREC:

Kanamycin-resistant Escherichia coli

NPs:

Nanoparticles

HepG2:

Human hepatocellular carcinoma cells

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MCF-10A:

Healthy mammary epithelial cells

FL83B:

Liver cells

CDs-PEG:

Polyethylene glycol-modified carbon dots

CD-Pri:

Pristine carbon dots

CDs-PEI:

Polyethyleneimine-coated carbon dots

NIH/3T3:

Mouse fibroblasts

Al-CDs:

Aluminum-doped carbon nanodots

TNFa:

Tumor necrosis factor-α

IL1:

Interleukin-1β

hMSCs:

Human mesenchymal stem cells

CNBs:

Carbon nanobeads

Pb2+ :

Palladium

Cd2+ :

Cadmium

B16F10:

Cellosaurus cell line

RAW264.7:

Murine macrophages

HEK-293:

Human embryonic kidney cell

LDH:

Lactate dehydrogenase

PEI:

Polyethyleneimine)

BPEI:

Branched poly-(ethylenimine)

PAA:

Poly(acrylic acid)

APTMS:

(3-Aminopropyl) trimethoxysilane

AT II:

Alveolar type II cells

DCFH-DA:

Dichloro-dihydro-fluorescein diacetate assay

NBT:

Nitroblue tetrazolium assay

p53:

The P53 gene

TNF3:

The TNF3 gene

CDKNIA:

The CDKNIA gene

NFKBIA:

The NFKBIA gene

AgNP:

Silver nanoparticle

CuO NP:

Copper oxide nanoparticle

TiO2 NP:

Titanium oxide nanoparticle

Ni NP:

Nickel nanoparticle

CAL-27:

Oral adenosquamous carcinoma cell

References

  1. Yan F, Zhang H, Sun Z et al (2019) Carbon dots as building blocks for the construction of functional nanocomposite materials. J Iran Chem Soc 17:1–15. https://doi.org/10.1007/s13738-019-01749-5

    Article  CAS  Google Scholar 

  2. Murugan AV, Kumar Y, Periyasamy L, Santhakumar M (2018) Transition metal ion (Mn2+, Fe2+, Co2+, and Ni2+)-doped carbon dots synthesized via microwave-assisted pyrolysis: a potential nanoprobe for magneto-fluorescent dual-modality bioimaging. ACS Biomater Sci Eng 4:2582–2596. https://doi.org/10.1021/acsbiomaterials.7b00943

    Article  CAS  Google Scholar 

  3. Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253. https://doi.org/10.1039/c2jm34690g

    Article  CAS  Google Scholar 

  4. Jeong CJ, Roy AK, Kim SH et al (2014) Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. Nanoscale 6:15196–15202. https://doi.org/10.1039/C4NR04805A

    Article  CAS  Google Scholar 

  5. Wang L, Li B, Xu F et al (2016) High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens Bioelectron 79:1–8. https://doi.org/10.1016/j.bios.2015.11.085

    Article  CAS  Google Scholar 

  6. Guo X, Wang C-F, Yu Z-Y et al (2012) Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun 48:2692–2694. https://doi.org/10.1039/c2cc17769b

    Article  CAS  Google Scholar 

  7. Ming H, Ma Z, Liu Y et al (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526–9531. https://doi.org/10.1039/c2dt30985h

    Article  CAS  Google Scholar 

  8. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  Google Scholar 

  9. Sciortino A, Cannizzo A, Messina F (2018) Carbon nanodots: a review—from the current understanding of the fundamental photophysics to the full control of the optical response. J Carbon Res 4:67–102. https://doi.org/10.3390/c4040067

    Article  CAS  Google Scholar 

  10. Bhattacharya D, Mishra MK, De G (2017) Carbon dots from a single source exhibiting tunable luminescent colors through the modification of surface functional groups in ORMOSIL films. J Phys Chem C 121:28106–28116. https://doi.org/10.1021/acs.jpcc.7b08039

    Article  CAS  Google Scholar 

  11. Barman MK, Patra A (2018) Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. J Photochem Photobiol C Photochem Rev 37:1–22. https://doi.org/10.1016/j.jphotochemrev.2018.08.001

    Article  CAS  Google Scholar 

  12. Sun YP, Zhou B, Lin Y et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757. https://doi.org/10.1021/ja062677d

    Article  CAS  Google Scholar 

  13. Bourlinos AB, Stassinopoulos A, Anglos D et al (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541. https://doi.org/10.1021/cm800506r

    Article  CAS  Google Scholar 

  14. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem 119:6473–6475. https://doi.org/10.1002/anie.200701271

    Article  CAS  Google Scholar 

  15. Liu R, Wu D, Liu S et al (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48:4598–4601. https://doi.org/10.1002/anie.200900652

    Article  CAS  Google Scholar 

  16. Zhu H, Wang X, Li Y et al (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120. https://doi.org/10.1039/b907612c

    Article  CAS  Google Scholar 

  17. Chan WCW, Maxwell DJ, Gao X et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46. https://doi.org/10.1016/S0958-1669(02)00282-3

    Article  CAS  Google Scholar 

  18. Gibbs SL (2012) Near infrared fluorescence for image-guided surgery. Quant Imaging Med Surg 2:177–187. https://doi.org/10.3978/j.issn.2223-4292.2012.09.04

    Article  Google Scholar 

  19. Yang S-T, Cao L, Luo PG et al (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309. https://doi.org/10.1021/ja904843x

    Article  CAS  Google Scholar 

  20. Lim MC, Seo S-S, Kang S et al (2012) Intraoperative image-guided surgery for ovarian cancer. Quant Imaging Med Surg 2:114–117. https://doi.org/10.3978/j.issn.2223-4292.2012.06.01

    Article  Google Scholar 

  21. Dong Y, Wang R, Li G et al (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224. https://doi.org/10.1021/ac3012126

    Article  CAS  Google Scholar 

  22. Li Y, Hu Y, Zhao Y et al (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780. https://doi.org/10.1002/adma.201003819

    Article  CAS  Google Scholar 

  23. Lee JH, Park G, Hong GH et al (2012) Design considerations for targeted optical contrast agents. Quant Imaging Med Surg 2:266–273. https://doi.org/10.3978/j.issn.2223-4292.2012.12.04

    Article  Google Scholar 

  24. Gao X, Yang L, Petros JA et al (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72. https://doi.org/10.1016/j.copbio.2004.11.003

    Article  CAS  Google Scholar 

  25. Statement PE (2013) Quantitative imaging in medicine and surgery: progress & perspective. Quant Imaging Med Surg 3:1–4. https://doi.org/10.3978/j.issn.2223-4292.2013.02.08

    Article  Google Scholar 

  26. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/C4CS00269E

    Article  CAS  Google Scholar 

  27. Yang Y, Cui J, Zheng M et al (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382. https://doi.org/10.1039/C1CC15678K

    Article  CAS  Google Scholar 

  28. Du F, Zhang M, Li X et al (2014) Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology 25:315702. https://doi.org/10.1088/0957-4484/25/31/315702

    Article  CAS  Google Scholar 

  29. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407–409. https://doi.org/10.1039/C1CC15988G

    Article  CAS  Google Scholar 

  30. Sk MP, Jaiswal A, Paul A et al (2012) Presence of amorphous carbon nanoparticles in food caramels. Sci Rep 2:1–5. https://doi.org/10.1038/srep00383

    Article  CAS  Google Scholar 

  31. Park SY, Lee HU, Park ES et al (2014) Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 6:3365–3370. https://doi.org/10.1021/am500159p

    Article  CAS  Google Scholar 

  32. Lu W, Qin X, Liu S et al (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351–5357. https://doi.org/10.1021/ac3007939

    Article  CAS  Google Scholar 

  33. Das B, Dadhich P, Pal P et al (2014) Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. J Mater Chem B 2:6839–6847. https://doi.org/10.1039/C4TB01020E

    Article  CAS  Google Scholar 

  34. Ke Y, Garg B, Ling Y (2014) Waste chicken eggshell as low-cost precursor for efficient synthesis of nitrogen-doped fluorescent carbon nanodots and their multi-functional applications. RSC Adv 4:58329–58336. https://doi.org/10.1039/C4RA10178B

    Article  CAS  Google Scholar 

  35. Liu S-S, Wang C-F, Li C-X et al (2014) Hair-derived carbon dots toward versatile multidimensional fluorescent materials. J Mater Chem C 2:6477–6483. https://doi.org/10.1039/C4TC00636D

    Article  CAS  Google Scholar 

  36. Chandra S, Das P, Bag S et al (2011) Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3:1533–1540. https://doi.org/10.1039/c0nr00735h

    Article  CAS  Google Scholar 

  37. Hu S-L, Niu K-Y, Sun J et al (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488. https://doi.org/10.1039/B812943F

    Article  CAS  Google Scholar 

  38. Zhai X, Zhang P, Liu C et al (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48:7955–7957. https://doi.org/10.1039/c2cc33869f

    Article  CAS  Google Scholar 

  39. Zhang C, Hu Z, Song L et al (2015) Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg 2+ with high sensitivity and selectivity. New J Chem 39:6201–6206. https://doi.org/10.1039/C5NJ00554J

    Article  CAS  Google Scholar 

  40. Jiang K, Sun S, Zhang L et al (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54:5360–5363. https://doi.org/10.1002/anie.201501193

    Article  CAS  Google Scholar 

  41. Wang X, Cao L, Yang ST et al (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed 49:5310–5314. https://doi.org/10.1002/anie.201000982

    Article  CAS  Google Scholar 

  42. Mehtaa VN, Jha S, Singhalc RK, Kailasaa SK (2014) Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem 38:6152–6160. https://doi.org/10.1039/C4NJ00840E.This

    Article  Google Scholar 

  43. Gupta A, Verma NC, Khan S et al (2016) Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media. Sens Actuators B Chem 232:107–114. https://doi.org/10.1016/j.snb.2016.03.110

    Article  CAS  Google Scholar 

  44. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837. https://doi.org/10.1039/c2cc33796g

    Article  CAS  Google Scholar 

  45. Li L, Dong T (2018) Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C 6:7944–7970. https://doi.org/10.1039/c7tc05878k

    Article  CAS  Google Scholar 

  46. Simsek S, Alas MO, Ozbek B, Genc R (2019) Fluorescent carbon dots from Nerium oleander: effects of physical conditions and the extract types. J Fluoresc 29:853–864

    Article  CAS  Google Scholar 

  47. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5:8904–8924. https://doi.org/10.1039/c7tb02484c

    Article  CAS  Google Scholar 

  48. Alas MO, Genc R (2017) An investigation into the role of macromolecules of different polarity as passivating agent on the physical, chemical and structural properties of fluorescent carbon nanodots. J Nanoparticle Res 19:185–199. https://doi.org/10.1007/s11051-017-3863-1

    Article  CAS  Google Scholar 

  49. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699. https://doi.org/10.1039/c2cc00110a

    Article  CAS  Google Scholar 

  50. Zhang H, Chen Y, Liang M et al (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86:9846–9852. https://doi.org/10.1021/ac502446m

    Article  CAS  Google Scholar 

  51. Cao L, Wang X, Meziani MJ et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319. https://doi.org/10.1021/ja073527l

    Article  CAS  Google Scholar 

  52. Mukherjee P, Misra SK, Gryka MC et al (2015) Tunable luminescent carbon nanospheres with well-defined nanoscale chemistry for synchronized imaging and therapy. Small 11:4691–4703. https://doi.org/10.1002/smll.201500728

    Article  CAS  Google Scholar 

  53. Bourlinos AB, Stassinopoulos A, Anglos D et al (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458. https://doi.org/10.1002/smll.200700578

    Article  CAS  Google Scholar 

  54. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551. https://doi.org/10.1021/jp905912n

    Article  CAS  Google Scholar 

  55. Genc R, Alas MO, Harputlu E et al (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci Rep 7:11222. https://doi.org/10.1038/s41598-017-11347-1

    Article  CAS  Google Scholar 

  56. Alas MO, Güngör A, Genc R, Erdem E (2019) Feeling the power: robust supercapacitor from nanostructured conductive polymer fostered with Mn2+ and carbon dots. Nanoscale 11:12804–12816. https://doi.org/10.1039/C9NR03544C

    Article  CAS  Google Scholar 

  57. Gayen B, Palchoudhury S, Chowdhury J (2019) Carbon dots: a mystic star in the world of nanoscience. J Nanomater. https://doi.org/10.1155/2019/3451307

    Article  Google Scholar 

  58. Emam AN, Loutfy SA, Mostafa AA et al (2017) Cyto-toxicity, biocompatibility and cellular response of carbon dots-plasmonic based nano-hybrids for bioimaging. RSC Adv 7:23502–23514. https://doi.org/10.1039/c7ra01423f

    Article  CAS  Google Scholar 

  59. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  60. Tang L, Ji R, Cao X et al (2012) Deep ultraviolet photoluminescence graphene quantum dots. ACS Nano 6:5102–5110. https://doi.org/10.1021/nn300760g

    Article  CAS  Google Scholar 

  61. Mochalin VN, Gogotsi Y (2009) Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc 131:4594–4595. https://doi.org/10.1021/ja9004514

    Article  CAS  Google Scholar 

  62. Yan F, Sun Z, Zhang H et al (2019) The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim Acta 186:583. https://doi.org/10.1007/s00604-019-3688-y

    Article  CAS  Google Scholar 

  63. Sun D, Ban R, Zhang PH et al (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon N Y 64:424–434. https://doi.org/10.1016/j.carbon.2013.07.095

    Article  CAS  Google Scholar 

  64. Cui Y, Zhang C, Sun L et al (2015) Simple and efficient synthesis of strongly green fluorescent carbon dots with upconversion property for direct cell imaging. Part Part Syst Charact 32:542–546. https://doi.org/10.1002/ppsc.201400221

    Article  CAS  Google Scholar 

  65. Wu Z, Song T, Sun B (2017) Carbon-based materials used for perovskite solar cells. ChemNanoMat 3:75–88. https://doi.org/10.1002/cnma.201600312

    Article  CAS  Google Scholar 

  66. Fagiolari L, Bella F (2019) Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ Sci 12:3437–3472. https://doi.org/10.1039/c9ee02115a

    Article  CAS  Google Scholar 

  67. Fu X, Xu L, Li J et al (2018) Flexible solar cells based on carbon nanomaterials. Carbon N Y 139:1063–1073. https://doi.org/10.1016/j.carbon.2018.08.017

    Article  CAS  Google Scholar 

  68. Jin J, Chen C, Li H et al (2017) Enhanced performance and photostability of perovskite solar cells by introduction of fluorescent carbon dots. ACS Appl Mater Interfaces 9:14518–14524. https://doi.org/10.1021/acsami.7b02242

    Article  CAS  Google Scholar 

  69. Zhu X, Sun J, Yuan S et al (2019) Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer. New J Chem 43:7130–7135. https://doi.org/10.1039/c8nj06146g

    Article  CAS  Google Scholar 

  70. Molaei MJ (2020) The optical properties and solar energy conversion applications of carbon quantum dots: a review. Sol Energy 196:549–566. https://doi.org/10.1016/j.solener.2019.12.036

    Article  CAS  Google Scholar 

  71. Guo X, Zhang H, Sun H et al (2017) Green synthesis of carbon quantum dots for sensitized solar cells. ChemPhotoChem 1:116–119. https://doi.org/10.1002/cptc.201600038

    Article  CAS  Google Scholar 

  72. Wang S, Zhu Y, Liu B et al (2019) Introduction of carbon nanodots into SnO2 electron transport layer for efficient and UV stable planar perovskite solar cells. J Mater Chem A 7:5353–5362. https://doi.org/10.1039/c8ta11651b

    Article  CAS  Google Scholar 

  73. Dao VD, Kim P, Baek S et al (2016) Facile synthesis of carbon dot-Au nanoraspberries and their application as high-performance counter electrodes in quantum dot-sensitized solar cells. Carbon N Y 96:139–144. https://doi.org/10.1016/j.carbon.2015.09.023

    Article  CAS  Google Scholar 

  74. Wang Y, Yan L, Ji G et al (2018) Synthesis of N, S-doped carbon quantum dots for use in organic solar cells as the ZnO modifier to eliminate the light-soaking effect. ACS Appl Mater Interfaces 11:2243–2253. https://doi.org/10.1021/acsami.8b17128

    Article  CAS  Google Scholar 

  75. Ma Z, Zhang YL, Wang L et al (2013) Bioinspired photoelectric conversion system based on carbon-quantum-dot- doped dye-semiconductor complex. ACS Appl Mater Interfaces 5:5080–5084. https://doi.org/10.1021/am400930h

    Article  CAS  Google Scholar 

  76. Mirtchev P, Henderson EJ, Soheilnia N et al (2012) Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J Mater Chem 22:1265–1269. https://doi.org/10.1039/c1jm14112k

    Article  CAS  Google Scholar 

  77. Zhang YQ, Ma DK, Zhang YG et al (2013) N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy 2:545–552. https://doi.org/10.1016/j.nanoen.2013.07.010

    Article  CAS  Google Scholar 

  78. Zhu W, Duan J, Duan Y et al (2017) Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyethylene glycol modified carbon quantum dots. J Power Sources 367:158–166. https://doi.org/10.1016/j.jpowsour.2017.09.055

    Article  CAS  Google Scholar 

  79. Zhang H, Zhang Q, Li M et al (2015) Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers. J Mater Chem C 3:12403–12409. https://doi.org/10.1039/c5tc02957k

    Article  CAS  Google Scholar 

  80. Zhang X, Li Z, Zhang Z et al (2016) Efficiency improvement of organic solar cells via introducing combined anode buffer layer to facilitate hole extraction. J Phys Chem C 120:13954–13962. https://doi.org/10.1021/acs.jpcc.6b03697

    Article  CAS  Google Scholar 

  81. Paulo S, Stoica G, Cambarau W et al (2016) Carbon quantum dots as new hole transport material for perovskite solar cells. Synth Met 222:17–22. https://doi.org/10.1016/j.synthmet.2016.04.025

    Article  CAS  Google Scholar 

  82. Hui W, Yang Y, Xu Q et al (2019) Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv Mater 1906374:1–9. https://doi.org/10.1002/adma.201906374

    Article  CAS  Google Scholar 

  83. Unnikrishnan B, Wu CW, Chen IWP et al (2016) Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain Chem Eng 4:3008–3016. https://doi.org/10.1021/acssuschemeng.5b01700

    Article  CAS  Google Scholar 

  84. Hoang VC, Nguyen LH, Gomes VG (2019) High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite. J Electroanal Chem 832:87–96. https://doi.org/10.1016/j.jelechem.2018.10.050

    Article  CAS  Google Scholar 

  85. Zhao X, Li M, Dong H et al (2017) Interconnected 3 D network of graphene-oxide nanosheets decorated with carbon dots for high-performance supercapacitors. Chemsuschem 10:2626–2634. https://doi.org/10.1002/cssc.201700474

    Article  CAS  Google Scholar 

  86. Lv H, Gao X, Xu Q et al (2017) Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance. ACS Appl Mater Interfaces 9:40394–40403. https://doi.org/10.1021/acsami.7b14761

    Article  CAS  Google Scholar 

  87. Prasath A, Athika M, Duraisamy E et al (2018) Carbon-quantum-dot-derived nanostructured MnO2 and its symmetrical supercapacitor performances. ChemistrySelect 3:8713–8723. https://doi.org/10.1002/slct.201801950

    Article  CAS  Google Scholar 

  88. Wang Y, Zhu Y, Yu S, Jiang C (2017) Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv 7:40973–40989. https://doi.org/10.1039/c7ra07573a

    Article  CAS  Google Scholar 

  89. Wang H, Yang L, Chu S et al (2019) Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal Chem 91:9292–9299. https://doi.org/10.1021/acs.analchem.9b02297

    Article  CAS  Google Scholar 

  90. Chu S, Wang H, Ling X et al (2020) A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing. ACS Appl Mater Interfaces 12:12962–12971. https://doi.org/10.1021/acsami.9b20458

    Article  CAS  Google Scholar 

  91. Wang Y, Zhang C, Chen X et al (2016) Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions. Nanoscale 8:5977–5984. https://doi.org/10.1039/c6nr00430j

    Article  CAS  Google Scholar 

  92. Burcu BAÇ, Genç R (2017) Naked eye and smartphone applicable detection of toxic mercury ions using fluorescent carbon nanodots. Turk J Chem 41:931–943. https://doi.org/10.3906/kim-1701-46

    Article  CAS  Google Scholar 

  93. Omer KM, Tofiq DI, Hassan AQ (2018) Solvothermal synthesis of phosphorus and nitrogen doped carbon quantum dots as a fluorescent probe for iron(III). Microchim Acta 185:4–11. https://doi.org/10.1007/s00604-018-3002-4

    Article  CAS  Google Scholar 

  94. Jin H, Gui R, Wang Y, Sun J (2017) Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta 169:141–148. https://doi.org/10.1016/j.talanta.2017.03.083

    Article  CAS  Google Scholar 

  95. Li P, Sun XY, Shen JS, Liu B (2016) A novel photoluminescence sensing system sensitive for and selective to bromate anions based on carbon dots. RSC Adv 6:61891–61896. https://doi.org/10.1039/c6ra12936f

    Article  CAS  Google Scholar 

  96. Baruah U, Gogoi N, Konwar A et al (2014) Carbon dot based sensing of dopamine and ascorbic acid. J Nanopart 2014:1–8. https://doi.org/10.1155/2014/178518

    Article  Google Scholar 

  97. Hu X, Shi J, Shi Y et al (2019) Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chem 272:58–65. https://doi.org/10.1016/j.foodchem.2018.08.021

    Article  CAS  Google Scholar 

  98. Wang L, Li M, Li W et al (2018) Rationally designed efficient dual-mode colorimetric/fluorescence sensor based on carbon dots for detection of pH and Cu2+ ions. ACS Sustain Chem Eng 6:12668–12674. https://doi.org/10.1021/acssuschemeng.8b01625

    Article  CAS  Google Scholar 

  99. Kumar P, Singh S, Gupta BK (2016) Future prospects of luminescent nanomaterials based security ink: from synthesis to anti-counterfeiting applications. Nanoscale 8:14297–14340. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  100. Ganguly S, Das P, Banerjee S, Das NC (2019) Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Funct Compos Struct 1:022001. https://doi.org/10.1088/2631-6331/ab0c80

    Article  Google Scholar 

  101. Jiang K, Zhang L, Lu J et al (2016) Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew Chem 128:7347–7351. https://doi.org/10.1002/ange.201602445

    Article  Google Scholar 

  102. Yang P, Zhu Z, Zhang T et al (2019) Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing. Carbon N Y 146:636–649. https://doi.org/10.1016/j.carbon.2019.02.028

    Article  CAS  Google Scholar 

  103. Tang M, Ren G, Zhu B et al (2019) Facile synthesis of orange emissive carbon dots and their application for mercury ion detection and fast fingerprint development. Anal Methods 11:2072–2081. https://doi.org/10.1039/c9ay00178f

    Article  CAS  Google Scholar 

  104. Wang HJ, Hou WY, Yu TT et al (2019) Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes. Dye Pigment 170:107623. https://doi.org/10.1016/j.dyepig.2019.107623

    Article  CAS  Google Scholar 

  105. Luo PG, Yang F, Yang ST et al (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4:10791–10807. https://doi.org/10.1039/c3ra47683a

    Article  CAS  Google Scholar 

  106. Luo PG, Sahu S, Yang ST et al (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127. https://doi.org/10.1039/c3tb00018d

    Article  CAS  Google Scholar 

  107. Zhao A, Chen Z, Zhao C et al (2015) Recent advances in bioapplications of C-dots. Carbon N Y 85:309–327. https://doi.org/10.1016/j.carbon.2014.12.045

    Article  CAS  Google Scholar 

  108. Miao P, Han K, Tang Y et al (2015) Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale 7:1586–1595. https://doi.org/10.1039/c4nr05712k

    Article  CAS  Google Scholar 

  109. Wang W, Li Y, Cheng L et al (2014) Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J Mater Chem B 2:46–48. https://doi.org/10.1039/c3tb21370f

    Article  CAS  Google Scholar 

  110. Yao YY, Gedda G, Girma WM et al (2017) Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl Mater Interfaces 9:13887–13899. https://doi.org/10.1021/acsami.7b01599

    Article  CAS  Google Scholar 

  111. Wang Z, Liao H, Wu H et al (2015) Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Anal Methods 7:8911–8917. https://doi.org/10.1039/c5ay01978h

    Article  CAS  Google Scholar 

  112. Kumar VB, Kumar R, Friedman O et al (2019) One-pot hydrothermal synthesis of elements (B, N, P)-doped fluorescent carbon dots for cell labelling, differentiation and outgrowth of neuronal cells. ChemistrySelect 4:4222–4232. https://doi.org/10.1002/slct.201900581

    Article  CAS  Google Scholar 

  113. Song Y, Shi W, Chen W et al (2012) Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem 22:12568–12573. https://doi.org/10.1039/c2jm31582c

    Article  CAS  Google Scholar 

  114. Hettiarachchi SD, Graham RM, Mintz KJ et al (2019) Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 11:6192–6205. https://doi.org/10.1039/C8NR08970A

    Article  CAS  Google Scholar 

  115. Kong T, Hao L, Wei Y et al (2018) Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell Prolif 51:1–9. https://doi.org/10.1111/cpr.12488

    Article  CAS  Google Scholar 

  116. Jung YK, Shin E, Kim B-S (2015) Cell nucleus-targeting zwitterionic carbon dots. Sci Rep 5:18807. https://doi.org/10.1038/srep18807

    Article  CAS  Google Scholar 

  117. Tuerhong M, Xu Y, Yın XB (2017) Review on carbon dots and their applications. Chin J Anal Chem 45:139–150. https://doi.org/10.1016/S1872-2040(16)60990-8

    Article  Google Scholar 

  118. Choi Y, Kim S, Choi MH et al (2014) Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv Funct Mater 24:5781–5789. https://doi.org/10.1002/adfm.201400961

    Article  CAS  Google Scholar 

  119. Broekgaarden M, Weijer R, Krekorian M et al (2016) Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res 9:1639–1662. https://doi.org/10.1007/s12274-016-1059-0

    Article  CAS  Google Scholar 

  120. Dong X, Liang W, Meziani MJ et al (2020) Carbon dots as potent antimicrobial agents. Theranostics 10:671–686. https://doi.org/10.7150/thno.39863

    Article  Google Scholar 

  121. Anand A, Unnikrishnan B, Wei SC et al (2019) Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—a minireview. Nanoscale Horizons 4:117–137. https://doi.org/10.1039/c8nh00174j

    Article  CAS  Google Scholar 

  122. Li YJ, Harroun SG, Su YC et al (2016) Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv Healthc Mater 5:2545–2554. https://doi.org/10.1002/adhm.201600297

    Article  CAS  Google Scholar 

  123. Song Y, Lu F, Li H et al (2018) Degradable carbon dots from cigarette smoking with broad-spectrum antimicrobial activities against drug-resistant bacteria. ACS Appl Bio Mater 1:1871–1879. https://doi.org/10.1021/acsabm.8b00421

    Article  CAS  Google Scholar 

  124. Jijie R, Barras A, Bouckaert J et al (2018) Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B Biointerfaces 170:347–354. https://doi.org/10.1016/j.colsurfb.2018.06.040

    Article  CAS  Google Scholar 

  125. Chen W, Hu C, Yang Y et al (2016) Rapid synthesis of carbon dots by hydrothermal treatment of lignin. Materials (Basel). https://doi.org/10.3390/ma9030184

    Article  Google Scholar 

  126. Li C-L, Ou C-M, Huang C-C et al (2014) Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B 2:4564. https://doi.org/10.1039/c4tb00216d

    Article  CAS  Google Scholar 

  127. Xue M, Zhan Z, Zou M et al (2016) Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J Chem 40:1698–1703. https://doi.org/10.1039/C5NJ02181B

    Article  CAS  Google Scholar 

  128. Feng X, Jiang Y, Zhao J et al (2015) Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Adv 5:31250–31254. https://doi.org/10.1039/C5RA02271A

    Article  CAS  Google Scholar 

  129. Feng J, Wang W-J, Hai X et al (2016) Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J Mater Chem B 4:387–393. https://doi.org/10.1039/C5TB01999K

    Article  CAS  Google Scholar 

  130. Yin B, Deng J, Peng X et al (2013) Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138:6551–6557. https://doi.org/10.1039/c3an01003a

    Article  CAS  Google Scholar 

  131. Dey D, Bhattacharya T, Majumdar B et al (2013) Carbon dot reduced palladium nanoparticles as active catalysts for carbon–carbon bond formation. Dalton Trans 42:13821. https://doi.org/10.1039/c3dt51234g

    Article  CAS  Google Scholar 

  132. Zheng J, Liu X, Yang Y et al (2018) Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes. New Carbon Mater 33:276–288. https://doi.org/10.1016/S1872-5805(18)60339-7

    Article  Google Scholar 

  133. Devi P, Thakur A, Bhardwaj SK et al (2018) Metal ion sensing and light activated antimicrobial activity of aloe-vera derived carbon dots. J Mater Sci Mater Electron 29:17254–17261. https://doi.org/10.1007/s10854-018-9819-0

    Article  CAS  Google Scholar 

  134. Wei J, Zhang X, Sheng Y et al (2014) Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 38:906–909. https://doi.org/10.1039/c3nj01325a

    Article  CAS  Google Scholar 

  135. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140:4260–4269. https://doi.org/10.1039/C5AN00454C

    Article  CAS  Google Scholar 

  136. Bahadur R, Kumawat MK, Thakur M, Srivastava R (2019) Multi-fluorescent cationic carbon dots for solid-state fingerprinting. J Lumin 208:428–436. https://doi.org/10.1016/j.jlumin.2018.12.049

    Article  CAS  Google Scholar 

  137. Kuhlbusch TA, Krug HF, Nau K (2009) NanoCare: health related aspects of nanomaterials: final scientific report. Dechema eV

  138. Landsiedel R, Ma-Hock L, Kroll A et al (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627. https://doi.org/10.1002/adma.200902658

    Article  CAS  Google Scholar 

  139. Brain JD, Curran MA, Donaghey T, Molina RM (2009) Biologic responses to nanomaterials depend on exposure, clearance, and material characteristics. Nanotoxicology 3:174–180. https://doi.org/10.1080/17435390802654628

    Article  CAS  Google Scholar 

  140. Chang E, Thekkek N, Yu WW et al (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412–1417. https://doi.org/10.1002/smll.200600218

    Article  CAS  Google Scholar 

  141. Hauck TS, Anderson RE, Fischer HC et al (2010) vivo quantum-dot toxicity assessment. Small 6:138–144. https://doi.org/10.1002/smll.200900626

    Article  CAS  Google Scholar 

  142. Zhu S, Li L, Gu Z et al (2020) 15 Years of small: research trends in nanosafety. Small 2000980:1–10. https://doi.org/10.1002/smll.202000980

    Article  CAS  Google Scholar 

  143. Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337. https://doi.org/10.1002/smll.201100001

    Article  CAS  Google Scholar 

  144. Chen C, Wang H (2016) Biomedical applications and toxicology of carbon nanomaterials. John Wiley Sons

  145. Vogel U, Savolainen K, Wu Q et al (2013) Handbook of nanosafety: measurement, exposure and toxicology. Elsevier, Amsterdam

    Google Scholar 

  146. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. https://doi.org/10.1289/ehp.7339

    Article  CAS  Google Scholar 

  147. Warheit DB, Borm PJA, Hennes C, Lademann J (2007) Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 19:631–643. https://doi.org/10.1080/08958370701353080

    Article  CAS  Google Scholar 

  148. Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444:267–269. https://doi.org/10.1038/444267a

    Article  CAS  Google Scholar 

  149. Oberdörster G, Maynard A, Donaldson K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:1–35. https://doi.org/10.1186/1743-8977-2-8

    Article  CAS  Google Scholar 

  150. Maynard A, Rejeski D (2009) Too small to overlook. Nature 460:174. https://doi.org/10.1038/460174a

    Article  CAS  Google Scholar 

  151. Cai X, Liu X, Jiang J et al (2020) Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments. Small 1907663:1–19. https://doi.org/10.1002/smll.201907663

    Article  CAS  Google Scholar 

  152. Service RF (2008) Nanotechnology: can high-speed tests sort out which nanomaterials are safe? Science (80-) 321:1036–1037. https://doi.org/10.1126/science.321.5892.1036

    Article  CAS  Google Scholar 

  153. Damoiseaux R, George S, Li M et al (2011) No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 3:1345–1360. https://doi.org/10.1039/c0nr00618a

    Article  CAS  Google Scholar 

  154. Li Y, Wang J, Zhao F et al. Review pharmacology & toxicology nanomaterial libraries and model organisms for rapid high content analysis of nanosafety. https://doi.org/10.1093/nsr/nwx120/4597983

  155. Purchase IFH (1999) Ethical review of regulatory toxicology guidelines involving experiments on animals: the example of endocrine disrupters. Toxicol Sci 52:141–147. https://doi.org/10.1093/toxsci/52.2.141

    Article  CAS  Google Scholar 

  156. Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338. https://doi.org/10.1021/nl047996m

    Article  CAS  Google Scholar 

  157. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172. https://doi.org/10.1289/ehp.8284

    Article  Google Scholar 

  158. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. https://doi.org/10.1021/nl0347334

    Article  CAS  Google Scholar 

  159. Lovrić J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234. https://doi.org/10.1016/j.chembiol.2005.09.008

    Article  CAS  Google Scholar 

  160. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153. https://doi.org/10.1038/sj.jid.5700508

    Article  CAS  Google Scholar 

  161. Lovrić J, Bazzi HS, Cuie Y et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385. https://doi.org/10.1007/s00109-004-0629-x

    Article  Google Scholar 

  162. Shi L, Zhao B, Li X et al (2016) Eco-friendly synthesis of nitrogen-doped carbon nanodots from wool for multicolor cell imaging, patterning, and biosensing. Sens Actuators B Chem 235:316–324. https://doi.org/10.1016/j.snb.2016.05.094

    Article  CAS  Google Scholar 

  163. Hsu P-C, Chen P-C, Ou C-M et al (2013) Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B 1:1774–1781. https://doi.org/10.1039/c3tb00545c

    Article  CAS  Google Scholar 

  164. Ko HY, Chang YW, Paramasivam G et al (2013) In vivo imaging of tumour bearing near infrared fluorescence- emitting carbon nanodots derived from tire soot. Chem Commun 49:10290–10292. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  165. Yang C, Thomsen RP, Ogaki R et al (2015) Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers. J Mater Chem B 3:4577–4584. https://doi.org/10.1039/c5tb00467e

    Article  CAS  Google Scholar 

  166. Wang K, Gao Z, Gao G et al (2013) Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett 8:122. https://doi.org/10.1186/1556-276X-8-122

    Article  CAS  Google Scholar 

  167. Yang Y, Ren X, Sun Z et al (2018) Toxicity and bio-distribution of carbon dots after single inhalation exposure in vivo. Chinese Chem Lett 29:895–898. https://doi.org/10.1016/j.cclet.2018.04.018

    Article  CAS  Google Scholar 

  168. Havrdova M, Hola K, Skopalik J et al (2016) Toxicity of carbon dots—effect of surface functionalization 1 on the cell 2 viability, reactive oxygen species generation and cell cycle. Carbon N Y. https://doi.org/10.1016/j.carbon.2015.12.027

    Article  Google Scholar 

  169. Periasamy VS, Athinarayanan J, Alfawaz MA, Alshatwi AA (2016) Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes. Chemosphere 144:275–284. https://doi.org/10.1016/j.chemosphere.2015.08.018

    Article  CAS  Google Scholar 

  170. Ayaz F, Alaş MÖ, Oğuz M, Genç R (2019) Aluminum doped carbon nanodots as potent adjuvants on the mammalian macrophages. Mol Biol Rep 46:2405–2415. https://doi.org/10.1007/s11033-019-04701-1

    Article  CAS  Google Scholar 

  171. Ayaz F, Alas MO, Genc R (2019) Differential immunomodulatory effect of carbon dots influenced by the type of surface passivation agent. Inflammation. https://doi.org/10.1007/s10753-019-01165-0

    Article  Google Scholar 

  172. Gaddam RR, Mukherjee S, Punugupati N et al (2017) Facile synthesis of carbon dot and residual carbon nanobeads: implications for ion sensing, medicinal and biological applications. Mater Sci Eng C 73:643–652. https://doi.org/10.1016/j.msec.2016.12.095

    Article  CAS  Google Scholar 

  173. Lategan K, Fowler J, Bayati M et al (2018) The effects of carbon dots on immune system biomarkers, using the murine macrophage cell line RAW 264.7 and human whole blood cell cultures. Nanomaterials 8:388. https://doi.org/10.3390/nano8060388

    Article  CAS  Google Scholar 

  174. Chatzimitakos TG, Kasouni AI, Troganis AN, Stalikas CD (2018) Carbonization of human fingernails: toward the sustainable production of multifunctional nitrogen and sulfur codoped carbon nanodots with highly luminescent probing and cell proliferative/migration properties. ACS Appl Mater Interfaces 10:16024–16032. https://doi.org/10.1021/acsami.8b03263

    Article  CAS  Google Scholar 

  175. Walters C, Pool E, Somerset V (2016) Nanotoxicity in aquatic invertebrates. Invertebr Exp Model Toxic Screen. https://doi.org/10.5772/711

    Article  Google Scholar 

  176. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  CAS  Google Scholar 

  177. Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962. https://doi.org/10.1016/S0047-6374(01)00249-4

    Article  CAS  Google Scholar 

  178. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res - Rev Mutat Res 567:1–61. https://doi.org/10.1016/j.mrrev.2003.11.001

    Article  CAS  Google Scholar 

  179. Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37:582–593. https://doi.org/10.1016/j.freeradbiomed.2004.03.012

    Article  CAS  Google Scholar 

  180. Xia Q, Chiang H-M, Zhou Y-T et al (2012) Phototoxicity of Kava—formation of reactive oxygen species leading to lipid peroxidation and DNA damage. Am J Chin Med 40:1271–1288. https://doi.org/10.1142/S0192415X12500942

    Article  CAS  Google Scholar 

  181. Gao G, Jiang YW, Yang J, Wu FG (2017) Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9:18368–18378. https://doi.org/10.1039/C7NR06764J

    Article  CAS  Google Scholar 

  182. Wright PC, Qin H, Choi MM et al (2014) Carbon nanodots interference with lactate dehydrogenase assay in human monocyte THP-1 cells. SpringerPlus 3:615. https://doi.org/10.1186/2193-1801-3-615

    Article  CAS  Google Scholar 

  183. Kang KS, Lee HU, Il Kim M et al (2015) In-vitro cytotoxicity assessment of carbon-nanodot-conjugated Fe-aminoclay (CD-FeAC) and its bio-imaging applications. J Nanobiotechnol 13:88. https://doi.org/10.1186/s12951-015-0151-z

    Article  CAS  Google Scholar 

  184. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921. https://doi.org/10.1039/C4TC00988F

    Article  CAS  Google Scholar 

  185. Sonthanasamy RSA, Ahmad WYW, Fazry S et al (2016) Transformation of crystalline starch nanoparticles into highly luminescent carbon nanodots: toxicity studies and their applications. Carbohydr Polym 137:488–496. https://doi.org/10.1016/j.carbpol.2015.11.021

    Article  CAS  Google Scholar 

  186. Sayes CM, Fortner JD, Guo W et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887. https://doi.org/10.1021/nl0489586

    Article  CAS  Google Scholar 

  187. Lu F, Yang S, Song Y et al (2019) Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Mater Res Express. https://doi.org/10.1088/2053-1591/ab0c55

    Article  Google Scholar 

  188. Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene–environment interactions. Mutagenesis 23:191–205. https://doi.org/10.1093/mutage/gen007

    Article  CAS  Google Scholar 

  189. Kawaguchi S, Nakamura T, Yamamoto A et al (2010) Is the comet assay a sensitive procedure for detecting genotoxicity? J Nucleic Acids 2010:1–8. https://doi.org/10.4061/2010/541050

    Article  CAS  Google Scholar 

  190. Hussain B, Sultana T, Sultana S et al (2017) Microelectrophoretic study of environmentally induced DNA damage in fish and its use for early toxicity screening of freshwater bodies. Environ Monit Assess. https://doi.org/10.1007/s10661-017-5813-x

    Article  Google Scholar 

  191. Ghosh M, Öner D, Duca R-C et al (2017) Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO 2 -np in bronchial epithelial (16-HBE) cells. Mutat Res Mol Mech Mutagen 796:1–12. https://doi.org/10.1016/j.mrfmmm.2017.01.003

    Article  CAS  Google Scholar 

  192. Shi X, Fu H, Shi JR et al (1998) Electronic transport properties of nitrogen doped amorphous carbon films deposited by the filtered cathodic vacuum arc technique. J Phys Condens Matter 10:92–93. https://doi.org/10.1088/0953-8984/10/41/011

    Article  Google Scholar 

  193. Gao Z, Shen G, Zhao X et al (2013) Carbon dots: a safe nanoscale substance for the immunologic system of mice. Nanoscale Res Lett 8:276. https://doi.org/10.1186/1556-276X-8-276

    Article  Google Scholar 

  194. McGee CF, Storey S, Clipson N, Doyle E (2017) Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology 26:449–458. https://doi.org/10.1007/s10646-017-1776-5

    Article  CAS  Google Scholar 

  195. Yin Y, Tan Z, Hu L et al (2017) Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications. Chem Rev 117:4462–4487. https://doi.org/10.1021/acs.chemrev.6b00693

    Article  CAS  Google Scholar 

  196. Lankveld DPK, Oomen AG, Krystek P et al (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31:8350–8361. https://doi.org/10.1016/j.biomaterials.2010.07.045

    Article  CAS  Google Scholar 

  197. Scown TM, Santos EM, Johnston BD et al (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534. https://doi.org/10.1093/toxsci/kfq076

    Article  CAS  Google Scholar 

  198. Gaiser BK, Biswas A, Rosenkranz P et al (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235. https://doi.org/10.1039/c1em10060b

    Article  CAS  Google Scholar 

  199. Garcia-Alonso J, Khan FR, Misra SK et al (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45:4630–4636. https://doi.org/10.1021/es2005122

    Article  CAS  Google Scholar 

  200. Miao AJ, Luo Z, Chen CS et al (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE 5:6–13. https://doi.org/10.1371/journal.pone.0015196

    Article  CAS  Google Scholar 

  201. Park S-Y, Choi J-H (2010) Geno- and ecotoxicity evaluation of silver nanoparticles in freshwater crustacean Daphnia magna. Environ Eng Res 15:23–27. https://doi.org/10.4491/eer.2010.15.1.428

    Article  Google Scholar 

  202. Pérez S, la Farré M, Barceló D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC 28:820–832. https://doi.org/10.1016/j.trac.2009.04.001

    Article  CAS  Google Scholar 

  203. Heinlaan M, Kahru A, Kasemets K et al (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–190. https://doi.org/10.1016/j.watres.2010.08.026

    Article  CAS  Google Scholar 

  204. Kim KT, Klaine SJ, Cho J et al (2010) Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Sci Total Environ 408:2268–2272. https://doi.org/10.1016/j.scitotenv.2010.01.041

    Article  CAS  Google Scholar 

  205. Jayaseelan C, Abdul Rahuman A, Ramkumar R et al (2014) Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicol Environ Saf 107:220–228. https://doi.org/10.1016/j.ecoenv.2014.06.012

    Article  CAS  Google Scholar 

  206. Asharani PV, Lian WuY, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. https://doi.org/10.1088/0957-4484/19/25/255102

    Article  Google Scholar 

  207. Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85. https://doi.org/10.1016/j.ecoenv.2011.11.012

    Article  CAS  Google Scholar 

  208. Pan L, Zhang H (2006) Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp Biochem Physiol C Toxicol Pharmacol 144:67–75. https://doi.org/10.1016/j.cbpc.2006.06.001

    Article  CAS  Google Scholar 

  209. Walters CR, Cheng P, Pool E, Somerset V (2016) Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNP). J Toxicol Environ Heal Part A Curr Issues 79:61–70. https://doi.org/10.1080/15287394.2015.1106357

    Article  CAS  Google Scholar 

  210. Xiao YY, Liu L, Chen Y et al (2016) Developmental toxicity of carbon quantum dots to the embryos/larvae of rare minnow (Gobiocypris rarus). Biomed Res Int. https://doi.org/10.1155/2016/4016402

    Article  Google Scholar 

  211. Yao K, Lv X, Zheng G et al (2018) Effects of carbon quantum dots on aquatic environments: comparison of toxicity to organisms at different trophic levels. Environ Sci Technol 52:14445–14451. https://doi.org/10.1021/acs.est.8b04235

    Article  CAS  Google Scholar 

  212. Kim TH, Sirdaarta JP, Zhang Q et al (2018) Selective toxicity of hydroxyl-rich carbon nanodots for cancer research. Nano Res 11:2204–2216. https://doi.org/10.1007/s12274-017-1838-2

    Article  CAS  Google Scholar 

  213. Li S, Skromne I, Peng Z et al (2016) “Dark” carbon dots specifically “light-up” calcified zebrafish bones. J Mater Chem B 4:7398–7405. https://doi.org/10.1039/c6tb02241c

    Article  CAS  Google Scholar 

  214. Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater. https://doi.org/10.1002/adma.201604634

    Article  Google Scholar 

  215. Long Z, Liu M, Mao L et al (2017) Rapid preparation of branched and degradable AIE-active fluorescent organic nanoparticles via formation of dynamic phenyl borate bond. Colloids Surf B Biointerfaces 150:114–120. https://doi.org/10.1016/j.colsurfb.2016.11.018

    Article  CAS  Google Scholar 

  216. Sahiner N, Sagbas S, Aktas N, Silan C (2016) Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids Surf B Biointerfaces 142:334–343. https://doi.org/10.1016/j.colsurfb.2016.03.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MOA thanks to the doctoral scholarship of Scientific and Technological Research Council of Turkey (TUBITAK, Grant No. 117M215) and Council of Higher Education of Turkey (YOK) for the doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rukan Genc Alturk or Dilek Battal.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alas, M.O., Alkas, F.B., Aktas Sukuroglu, A. et al. Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. J Mater Sci 55, 15074–15105 (2020). https://doi.org/10.1007/s10853-020-05054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05054-y

Navigation