Skip to main content
Log in

Determining the crystal and electronic structures of the magnesium secondary battery cathode material MgCo2−xMnxO4 using first-principles calculations and a quantum beam during discharge

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stable structures of the spinel compounds MgCo2O4 and MgCo1.5Mn0.5O4 following the insertion of Mg atoms into vacant 16c sites during discharge were investigated using first-principles calculations. During this insertion, Mg atoms at 8a sites were found to migrate to other vacant 16c sites, such that the spinel form transitioned to a rock salt structure. The structural change from the standard spinel phase to a rock salt form was minimal in the case of MgCo2O4, since this change required the insertion of numerous Mg atoms. In contrast, a more pronounced structural change from the normal spinel to a rock salt form occurred in the MgCo1.5Mn0.5O4, as this change required fewer Mg atom insertions. The data suggest that the electron density and bond length between Mg atoms at 8a sites and O atoms in MgCo1.5Mn0.5O4 are both reduced compared to that in MgCo2O4. The Mg atoms in MgCo1.5Mn0.5O4 were determined to readily undergo intercalation as a result of the substitution of Mn atoms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Idemoto Y, Sera Y, Ishida N, Kitamura N (2015) Average and local crystal structure and electronic structure of 0.4Li2MnO3–0.6LiMn1/3Ni1/3Co1/3O2 using first-principles calculations and neutron beam and synchrotron X-ray sources. Electrochemistry 83:879–884

    Article  CAS  Google Scholar 

  2. Idemoto Y, Horie A, Ishida N, Kitamura N (2016) Crystal structure analysis in the charge and discharge process of Li-ion battery cathode-material LiNi0.8Co0.2O2. Electrochemistry 84:802–807

    Article  CAS  Google Scholar 

  3. Idemoto Y, Kitamura N, Ueki K, Vogel SC, Uchimoto Y (2012) Average and local structure analyses of Li(Mn1/3Ni1/3Co1/3−xAlx)O2 using neutron and synchrotron X-ray sources. J Electrochem Soc 159:673–677

    Article  Google Scholar 

  4. Idemoto Y, Nakayama S, Ishida N, Kitamura N (2017) Change of average, local structures for 0.5Li2MnO3–0.5LiMn5/12Ni5/12Co1/6O2 by heat-treatment under vacuum. Electrochemistry 85:660–666

    Article  CAS  Google Scholar 

  5. Idemoto Y, Hiranuma T, Ishida N, Kitamura N (2018) Effect of operating temperature on local structure during first discharge of 0.4Li2MnO3–0.6LiMn1/3Ni1/3Co1/3O2 electrodes. J Power Sources 378:198–208

    Article  CAS  Google Scholar 

  6. Idemoto Y, Sekine T, Ishida N, Kitamura N (2017) Change of local structures for 0.5Li2MnO3–0.5LiMn1/3Ni1/3Co1/3O2 in first charge process of different rates. J Mater Sci 52:8530–8649. https://doi.org/10.1007/s10853-017-1088-4

    Article  CAS  Google Scholar 

  7. Gautam GS, Canepa P, Malik R, Liu M, Persson K, Ceder G (2015) First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem Commun 51:13619–13622

    Article  CAS  Google Scholar 

  8. Ling C, Zhang R, Arthur TS, Mizuno F (2015) How general is the conversion reaction in Mg battery cathode: a case study of the magnesiation of α-MnO2. Chem Mater 27:5799–5807

    Article  CAS  Google Scholar 

  9. Spahr ME, Novák P, Haas O, Nesper R (1995) Electrochemical insertion of lithium, sodium, and magnesium molybdenum(VI) oxide. J Power Sources 54:346–351

    Article  CAS  Google Scholar 

  10. Idemoto Y, Takahashi T, Ishida N, Nakayama M, Kitamura N (2019) Synthesis, crystal structure analysis, and electrochemical properties of rock-salt type MgxNiyCozO2 as a cathode material for Mg rechargeable batteries. Inorg Chem 58:5664–5670

    Article  CAS  Google Scholar 

  11. Peshev P, Toshev A, Gyurov G (1989) Preparation of high-dispersity MCo2O4 (M = Mg, Ni, Zn) Spinel by thermal dissociation of coprecipitated oxalates. Mat Res Bull 24:33–40

    Article  CAS  Google Scholar 

  12. Orikasa Y, Masese T, Koyama Y, Mori T, Hattori M, Yamamoto K, Okado T, Huang Z-D, Minato T, Tassel C, Kim J, Kobayashi Y, Abe T, Kageyama H, Uchimoto Y (2014) High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep 4:5622–5627

    Article  CAS  Google Scholar 

  13. NuLi Y, Yang J, Li Y, Wang J (2010) Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun 46:3794–3796

    Article  CAS  Google Scholar 

  14. Huang Z-D, Masese T, Orikasa Y, Mori T, Minato T, Tassel C, Kobayashi Y, Kageyama H, Uchimoto Y (2014) MgFePO4F as a feasible cathode material for magnesium batteries. J Mater Chem A 2:11578–11582

    Article  CAS  Google Scholar 

  15. Huang Z-D, Masese T, Orikasa Y, Mori T, Yamamoto K (2015) Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv 5:8598–8603

    Article  CAS  Google Scholar 

  16. Kamioka N, Ichitsubo T, Uda T, Imashuku S, Taninouchi Y, Matsubara E (2008) Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater Trans 49:824–828

    Article  CAS  Google Scholar 

  17. Yagi S, Ichikawa Y, Yamada I, Doi T, Ichitsubo T, Matsubara E (2013) Synthesis of binary magnesium–transition metal oxides via inverse coprecipitation. Jpn J Appl Phys 52:025501

    Article  Google Scholar 

  18. Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Doi T, Matsubara E (2015) Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci 2:1500072

    Article  Google Scholar 

  19. Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, Persson A (2015) Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ Sci 6:964–974

    Article  Google Scholar 

  20. Sun X, Bonnick P, Duffort V, Liu M, Rong Z, Persson KA, Ceder G, Nazar LF (2016) A high capacity thiospinel cathode for Mg batteries. Energy Environ Sci 6:2273–2277

    Article  Google Scholar 

  21. Chen T, Ceder G, Gautam GS, Canepa P (2019) Evaluation of Mg compounds as coating materials in Mg batteries. Front Chem 7:24

    Article  CAS  Google Scholar 

  22. Kitamura N, Tanabe Y, Ishida N, Idemoto Y (2019) The atomic structure of a MgCo2O4 nanoparticle for a positive electrode of a Mg rechargeable battery. Chem Commun 55:2517–2520

    Article  CAS  Google Scholar 

  23. Idemoto Y, Mizutani Y, Ishibashi C, Ishida N, Kitamura N (2019) Synthesis, crystal structure and electrode properties of spinel-type MgCo2−xMnxO4. Electrochemistry 87:220–228

    Article  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  25. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  26. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276

    Article  CAS  Google Scholar 

  27. Farrow CL, Juhas P, Liu JW, Bryndin D, Božin ES, Bloch J, Proffen Th, Billinge SJL (2007) PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys Condens Matter 19:1–9

    Article  Google Scholar 

  28. Ishibashi C, Mizutani Y, Ishida N, Kitamura N, Idemoto Y (2019) Crystal and electronic structures of MgCo2−xMnxO4 as cathode material for magnesium secondary batteries using first-principles calculations and quantum beam measurements. Bull Chem Soc Jpn 92:1950–1959

    Article  CAS  Google Scholar 

  29. Robinson K, Gibbs GV, Ribbe PH (1972) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  30. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst A 32:751–767

    Article  Google Scholar 

  31. Mortazavi B, Rahaman O, Ahzi S, Rabczuk T (2017) Flat borophene films as anode materials for Mg, Na or Li-ion batteries with ultra high capacities: a first-principles study. Appl Mater Today 8:60–67

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JST ALCA-SPRING Grant Number JPMJAL1301, Japan. We are deeply grateful for the cooperation of Dr. Koji Ohara of JASRI (Japan Synchrotron Radiation Research Institute), and Ms. Mai Ichiyama of Tokyo University of Science for with regard to synchrotron X-ray total-scattering (SPring-8, BL04B2 Proposal No. 2018A1040)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Idemoto.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishibashi, C., Ishida, N., Kitamura, N. et al. Determining the crystal and electronic structures of the magnesium secondary battery cathode material MgCo2−xMnxO4 using first-principles calculations and a quantum beam during discharge. J Mater Sci 55, 13852–13870 (2020). https://doi.org/10.1007/s10853-020-04979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04979-8

Navigation