Skip to main content
Log in

First-principles calculations of stable local structures and electronic structures of magnesium secondary battery cathode materials, MgCo2−xMnxO4 (x = 0, 0.5), in second charged state after first discharge

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The stable structures associated with the second charge of MgCo2−xMnxO4 (x = 0, 0.5), where Mg is removed from the stable first-discharge models, are investigated using first-principles calculations. If spinel structures remain in the stable structures after the first discharge process, the stable structures during the second charge process change to spinel structures very similar to the pristine (uncycled material). Structural change of the Mg/Co mixed-cation-spinel-based model is more difficult than that of the normal-spinel-based model because Co atoms at 16c sites encounter more difficulty than Mg atoms at 16c sites in migrating to 8a sites. However, if the Mg/Co mixed-cation-spinel-based models after the first discharge have Co atoms at the 8a sites, the models are expected to change to the fully spinel structure during the second charge. These theoretical results are in good agreement with the experimental measurements; furthermore, the desorption mechanism and diffusion process for Mg2+ in MgCo2−xMnxO4 (x = 0, 0.5) crystals during the charging process, which have not been determined in previous experimental studies, are revealed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279

    Article  CAS  Google Scholar 

  2. Gautam GS, Canepa P, Malik R, Liu M, Persson K, Ceder G (2015) First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem Commun 51:13619–13622

    Article  CAS  Google Scholar 

  3. Ling C, Zhang R, Arthur TS, Mizuno F (2015) How general is the conversion reaction in Mg Battery cathode: a case study of the magnesiation of α-MnO2. Chem Mater 27:5799–5807

    Article  CAS  Google Scholar 

  4. Spahr ME, Novák P, Haas O, Nesper R (1995) Electrochemical insertion of lithium, sodium, and magnesium molybdenum(VI) oxide. J Power Sources 54:346–351

    Article  CAS  Google Scholar 

  5. Peshev P, Toshev A, Gyurov G (1989) Preparation of high-dispersity MCo2O4 (M = Mg, Ni, Zn) spinel by thermal dissociation of coprecipitated oxalates. Mat Res Bull 24:33–40

    Article  CAS  Google Scholar 

  6. Orikasa Y, Masese T, Koyama Y, Mori T, Hattori M, Yamamoto K, Okado T, Huang Z-D, Minato T, Tassel C, Kim J, Kobayashi Y, Abe T, Kageyama H, Uchimoto Y (2014) High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep 4:5622–5627

    Article  CAS  Google Scholar 

  7. NuLi Y, Yang J, Li Y, Wang J (2010) Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun 46:3794–3796

    Article  CAS  Google Scholar 

  8. Huang Z-D, Masese T, Orikasa Y, Mori T, Minato T, Tassel C, Kobayashi Y, Kageyama H, Uchimoto Y (2014) MgFePO4F as a feasible cathode material for magnesium batteries. J Mater Chem A 2:11578–11582

    Article  CAS  Google Scholar 

  9. Huang Z-D, Masese T, Orikasa Y, Mori T, Yamamoto K (2015) Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv 5:8598–8603

    Article  CAS  Google Scholar 

  10. Idemoto Y, Yamamoto R, Ishida N, Kitamura N (2015) Change in local structure of 0.4Li2MnO3–0.6LiMn1/3Ni1/3Co1/3O2 during first discharge process. Electrochim Acta 153:399–408

    Article  CAS  Google Scholar 

  11. Idemoto Y, Nakayama S, Ishida N, Kitamura N (2017) Change of average, local structures for 0.5Li2MnO3–0.5LiMn5/12Ni5/12Co1/6O2 by heat-treatment under vacuum. Electrochemistry 85(10):660–666

  12. Idemoto Y, Tejima F, Ishida N, Kitamura N (2019) Average, electronic, and local structures of LiMn2-xAlxO4 in charge–discharge process by neutron and synchrotron X-ray. J Power Sources 410–411:38–44

    Article  Google Scholar 

  13. Idemoto Y, Hiranuma T, Ishida N, Kitamura N (2018) Effect of operating temperature on local structure during first discharge of 0.4Li2MnO3-0.6LiMn1/3Ni1/3Co1/3O2 electrodes. J Power Sources 378:198–208

    Article  CAS  Google Scholar 

  14. Idemoto Y, Takahashi T, Ishida N, Nakayama M, Kitamura N (2019) Synthesis, crystal structure analysis, and electrochemical properties of rock-salt type MgxNiyCozO2 as a cathode material for Mg rechargeable batteries. Inorg Chem 58:5664–5670

    Article  CAS  Google Scholar 

  15. Idemoto Y, Kawakami N, Ishida N, Kitamura N, Synthesis (2019) Electrochemical properties and changes of crystal and electronic structures in charge/discharge process of spinel type cathode-materials Mg(Mg0.5V1.5−xNix)O4 (x = 0, 0.1, 0.2, 0.3) for magnesium secondary batteries. Electrochemistry 87(5):281–288

  16. Wang F, Liu Y, Zhao Y, Wang Y, Wang Z, Zhang W, Ren F (2018) Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl Sci 8:22

    Article  Google Scholar 

  17. Xu J, Wang L (2019) Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors. Sci Rep 9:12557

    Article  Google Scholar 

  18. Teng Y, Yu D, Li Y, Meng Y, Wu Y, Feng Y, Hua Y, Wang C, Zhao X, Liu X (2020) Facile synthesis of hierarchical MgCo2O4@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J Electrochem Soc 167:020510

  19. Idemoto Y, Kawakami N, Ishida N, and Kitamura N, Synthesis (2020) Electrochemical properties, and changes in crystal and electronic structures during charge/discharge process of spinel-type cathode materials Mg4V5-xNixO12 (x=0, 0.3, 0.6, 1.0) for magnesium secondary batteries. J Power Sources 455:227962

  20. Kitamura N, Tanabe Y, Ishida N, Idemoto Y (2019) The atomic structure of a MgCo2O4 nanoparticle for a positive electrode of a Mg rechargeable battery. Chem Commun 55:2517–2520

    Article  CAS  Google Scholar 

  21. Idemoto Y, Mizutani Y, Ishibashi C, Ishida N, Kitamura N (2019) Synthesis, crystal structure and electrode properties of spinel-type MgCo2−xMnxO4. Electrochemistry 87:220–228

    Article  Google Scholar 

  22. Idemoto Y, Ichiyama M, Ishida N, Kitamura N (2021) Structural and electronic properties of spinel type Mg1+yCo2-x-yMnxO4 for cathode applications in magnesium rechargeable batteries. J Power Sources 482(228920):1–9

    Google Scholar 

  23. Ishibashi C, Mizutani Y, Ishida N, Kitamura N, Idemoto Y (2019) Crystal and electronic structures of MgCo2-xMnxO4 as cathode material for magnesium secondary batteries using first-principles calculations and quantum beam measurements. Bull Chem Soc Jpn 92:1950–1959

    Article  CAS  Google Scholar 

  24. Ishibashi C, Mizutani Y, Ishida N, Kitamura N, Idemoto Y (2020) Determining the crystal and electronic structures of the magnesium secondary battery cathode material MgCo2-xMnxO4 using first-principles calculations and a quantum beam during discharge. J Mater Sci 55:13852–13870

    Article  CAS  Google Scholar 

  25. Ishibashi C, Ichiyama M, Ishida N, Kitamura N, Idemoto Y (2021) Theoretical study using first-principles calculations of the electronic structures of magnesium secondary battery cathode materials MgCo2−xMnxO4 (x = 0, 0.5) in the pristine and discharged states. Electrochemistry 89:256–266

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  27. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  28. Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Doi T, Matsubara E (2015) Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci 2:1500072

    Article  Google Scholar 

  29. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276

    Article  CAS  Google Scholar 

  30. Farrow CL, Juhas P, Liu JW, Bryndin D, Božin ES, Bloch J, Proffen Th, Billinge SJL (2007) PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys: Condens Matter 19(335219):1–9

    Google Scholar 

  31. Izumi F, Momma K (2007) Three-dimensional visualization in powder diffraction. Solid State Phenom 130:15–20

    Article  CAS  Google Scholar 

  32. Robinson K, Gibbs GV, Ribbe PH (1972) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  33. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by JST, ALCA-SPRING Grant Number JPMJAC1301, Japan. This work was also supported in part by JSPS KAKENHI Grant Number 20K15382, Japan. We are deeply grateful for the cooperation of Dr. Keiichi Osaka of the Japan Synchrotron Radiation Research Institute (JASRI) for cooperation with the synchrotron radiation synchrotron X-ray diffraction measurements (BL19B2, SPring-8, Proposal No. 2019A1760) and Dr. Koji Ohara of JASRI (Japan Synchrotron Radiation Research Institute) for assistance with synchrotron X-ray total scattering measurements (BL04B2, SPring-8, Proposal Nos. 2019A1137 and 2018A1040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Idemoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 956 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishibashi, C., Ichiyama, M., Ishida, N. et al. First-principles calculations of stable local structures and electronic structures of magnesium secondary battery cathode materials, MgCo2−xMnxO4 (x = 0, 0.5), in second charged state after first discharge. J Solid State Electrochem 26, 663–682 (2022). https://doi.org/10.1007/s10008-021-05098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05098-3

Keywords

Navigation