Skip to main content
Log in

Fabrication of a superhydrophobic and flame-retardant cotton fabric using a DNA-based coating

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flame-retardant and superhydrophobic coatings over cotton fabric are fabricated by solution immersion method using green-based flame retardants, i.e. DNA, silver nitrate and octadecyltriethoxysilane are used to get flame-retardant cotton with superhydrophobic nature. The results of this work showed that the as-prepared cotton fabric with a maximal contact angle of 157° was obtained and surfaces before and after were characterised by scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR studies. Some typical flame tests and TGA/DTG studies were done to evaluate the flame retardant property and thermal stability of the coated cotton samples. These results demonstrated that solution immersion strategy is a relatively simple and convenient method to fabricate superhydrophobic and flame-retardant cotton fabric.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromol 13:2843–2848. https://doi.org/10.1021/bm300873b

    Article  CAS  Google Scholar 

  2. Shen Q, Song L, Pan H, Pan Y, Hu Y, Lu Y et al (2016) Fabrication of flame retardant coating on cotton fabric by alternate assembly of exfoliated layered double hydroxides and alginate. RSC Adv 6:111950–111958. https://doi.org/10.1039/c6ra21804k

    Article  Google Scholar 

  3. Zhang M, Zang D, Shi J, Gao Z, Wang C, Li J (2015) Superhydrophobic cotton textile with robust composite film and flame retardancy. RSC Adv 5:67780–67786. https://doi.org/10.1039/c5ra09963c

    Article  CAS  Google Scholar 

  4. Chen S, Li X, Li Y, Sun J (2015) Al CET. Intumescent Flame-Retardant and coatings on cotton fabric. ACS Nano. https://doi.org/10.1021/acsnano.5b00121

    Article  Google Scholar 

  5. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96:745–750. https://doi.org/10.1016/j.polymdegradstab.2011.02.019

    Article  CAS  Google Scholar 

  6. Becher EM, Patel H, Zhang D, Nasir Z, Shrestha SB, Peng X et al (2017) Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interface Sci 505:892–899. https://doi.org/10.1016/j.jcis.2017.06.087

    Article  CAS  Google Scholar 

  7. Suryaprabha T, Sethuraman MG (2018) Fabrication of superhydrophobic and enhanced flame-retardant coatings over cotton fabric. Cellulose 25:3151–3161. https://doi.org/10.1007/s10570-018-1757-8

    Article  CAS  Google Scholar 

  8. Zhang S, Jin X, Gu X, Chen C, Li H, Zhang Z et al (2018) The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein. J Appl Polym Sci 135:46599. https://doi.org/10.1002/app.46599

    Article  CAS  Google Scholar 

  9. Faheem S, Baheti V, Tunak M, Wiener J, Militky J (2019) Comparative performance of flame retardancy, physiological comfort, and durability of cotton textiles treated with alkaline and acidic casein suspension. J Ind Text 48:969–991. https://doi.org/10.1177/1528083717750885

    Article  CAS  Google Scholar 

  10. Faheem S, Baheti V, Tunak M, Wiener J, Militky J (2019) Flame resistance behavior of cotton fabrics coated with bilayer assemblies of ammonium polyphosphate and casein. Cellulose 26:3557–3574. https://doi.org/10.1007/s10570-019-02296-1

    Article  CAS  Google Scholar 

  11. Alongi J, Carletto RA, Bosco F, Carosio F, Di Blasio A, Cuttica F et al (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117. https://doi.org/10.1016/j.polymdegradstab.2013.11.016

    Article  CAS  Google Scholar 

  12. Alongi J, Carletto RA, Di Blasio A, Cuttica F, Carosio F, Bosco F et al (2013) Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics. Carbohydr Polym 96:296–304. https://doi.org/10.1016/j.carbpol.2013.03.066

    Article  CAS  Google Scholar 

  13. Alongi J, Di Blasio A, Milnes J, Malucelli G, Bourbigot S, Kandola B et al (2015) Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polym Degrad Stab 113:110–118. https://doi.org/10.1016/j.polymdegradstab.2014.11.001

    Article  CAS  Google Scholar 

  14. Cheng X-W, Guan J-P, Tang R-C, Liu K-Q (2016) Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J Clean Prod 124:114–119. https://doi.org/10.1016/j.jclepro.2016.02.113

    Article  CAS  Google Scholar 

  15. Feng JX, Su SP, Zhu J (2011) An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym Adv Technol 22:1115–1122. https://doi.org/10.1002/pat.1954

    Article  CAS  Google Scholar 

  16. Malucelli G, Bosco F, Alongi J, Carosio F, Di Blasio A, Mollea C et al (2014) Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Adv 4:46024–46039. https://doi.org/10.1039/C4RA06771A

    Article  CAS  Google Scholar 

  17. Zhang T, Yan H, Shen L, Fang Z, Zhang X, Wang J et al (2014) Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene-vinyl acetate copolymer. Ind Eng Chem Res 53:19199–19207. https://doi.org/10.1021/ie503421f

    Article  CAS  Google Scholar 

  18. Carosio F, Di Blasio A, Alongi J, Malucelli G (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polym Guildf 54:5148–5153. https://doi.org/10.1016/j.polymer.2013.07.029

    Article  CAS  Google Scholar 

  19. Quartinello F, Kremser K, Vecchiato S, Schoen H, Vielnascher R, Ploszczanski L et al (2019) Increased flame retardancy of enzymatic functionalized PET and nylon fabrics via DNA immobilization. Front Chem 7:1–13. https://doi.org/10.3389/fchem.2019.00685

    Article  CAS  Google Scholar 

  20. Alongi J, Milnes J, Malucelli G, Bourbigot S, Kandola B (2014) Thermal degradation of DNA-treated cotton fabrics under different heating conditions. J Anal Appl Pyrolysis 108:212–221. https://doi.org/10.1016/j.jaap.2014.04.014

    Article  CAS  Google Scholar 

  21. Suryaprabha T, Sethuraman MG (2017) Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose 24:395–407. https://doi.org/10.1007/s10570-016-1110-z

    Article  CAS  Google Scholar 

  22. Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photocatalytic self-cleaning cotton. J Mater Chem A 2:18005–18011. https://doi.org/10.1039/c4ta02764g

    Article  CAS  Google Scholar 

  23. Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z et al (2011) Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Poly(lactic acid)/Starch Biocomposites. Ind Eng Chem Res 50:713–720. https://doi.org/10.1021/ie1017157

    Article  CAS  Google Scholar 

  24. Xue C-H, Zhang L, Wei P, Jia S-T (2016) Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose 23:1471–1480. https://doi.org/10.1007/s10570-016-0885-2

    Article  CAS  Google Scholar 

  25. Suryaprabha T, Sethuraman MG (2017) Design of electrically conductive superhydrophobic antibacterial cotton fabric through hierarchical architecture using bimetallic deposition. J Alloys Compd 724:240–248. https://doi.org/10.1016/j.jallcom.2017.07.009

    Article  CAS  Google Scholar 

  26. Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013) DNA: A novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785. https://doi.org/10.1039/c3ta00107e

    Article  CAS  Google Scholar 

  27. Takeshima T, Tada Y, Sakaguchi N, Watari F, Fugetsu B (2015) DNA/ag nanoparticles as antibacterial agents against gram-negative bacteria. Nanomaterials 5:284–297. https://doi.org/10.3390/nano5010284

    Article  CAS  Google Scholar 

  28. Pramanik S, Chatterjee S, Saha A, Devi PS, Suresh KG (2016) Unraveling the interaction of silver nanoparticles with mammalian and bacterial DNA. J Phys Chem B 120:5313–5324. https://doi.org/10.1021/acs.jpcb.6b01586

    Article  CAS  Google Scholar 

  29. Basu S, Jana S, Pande S, Pal T (2008) Interaction of DNA bases with silver nanoparticles: assembly quantified through SPRS and SERS. J Colloid Interface Sci 321:288–293. https://doi.org/10.1016/j.jcis.2008.02.015

    Article  CAS  Google Scholar 

  30. Zhang M, Wang C (2013) Fabrication of cotton fabric with superhydrophobicity and flame retardancy. Carbohydr Polym 96:396–402. https://doi.org/10.1016/j.carbpol.2013.04.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank UGC-SAP for their financial support.

Funding

Funding was provided by UGC-RFSMS (Grand No. F.No.25-1/2014-15/(BSR)/7-225/2008/(BSR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathur Gopalakrishnan Sethuraman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryaprabha, T., Sethuraman, M.G. Fabrication of a superhydrophobic and flame-retardant cotton fabric using a DNA-based coating. J Mater Sci 55, 11959–11969 (2020). https://doi.org/10.1007/s10853-020-04911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04911-0

Navigation