Skip to main content
Log in

SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-dimensional SiO2/nitrogen-doped graphene aerogels (SiO2/NGA) with different SiO2 loading masses have been synthesized by a facile hydrothermal route. This composite structure significantly increased capacity through surface and interface engineering, and the three-dimensional structure can greatly absorb the volume expansion of silica. When applied as the anode material for lithium-ion batteries (LIBs), the SiO2/NGA nanocomposite can deliver a specific capacity of more than 1000 mAh g−1 at a current density of 100 mA g−1 with long cycle stability. Moreover, it can also present an excellent capacity reversibility after the rate performance test. Further analysis reveals that the SiO2/NGA shows an enhanced contribution of capacitive charge mechanism and displays typical pseudocapacitive behavior. In this case, constructing nitrogen-doped aerogel composite is an effective direction for improving Si-based electrodes for potential applications as the electrode for LIBs.

Graphic abstract

Three-dimensional porous SiO2/nitrogen-doped aerogel (SiO2/NGA) was synthesized. This novel SiO2/NGA composite structure can effectively solving the problem of huge volume change during cycles as well as facilitate the fast diffusion of Li ions and Electronics, and thus achieve improved anode performance. As Li-ion batteries anode materials, which shows excellent electrochemical performance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lin N, Zhou J, Wang L, Zhu Y, Qian Y (2015) Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 7:409–414

    CAS  Google Scholar 

  2. Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M et al (2018) Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14:1702737

    Google Scholar 

  3. Zhu G, Gu Y, Wang Y, Qu Q, Zheng H (2019) Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries. J Alloys Compd 787:928–934

    CAS  Google Scholar 

  4. Zhang CL, Lu BR, Cao FH, Yu ZL, Cong HP, Yu SH (2018) Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries. J Mater Chem A 6:12962–12968

    CAS  Google Scholar 

  5. Yang M, Dai J, He M, Duan T, Yao W (2020) Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage. J Colloid Interf Sci 567:256–263

    CAS  Google Scholar 

  6. Guo H, Mao R, Yang X, Chen J (2012) Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta 74:271–274

    CAS  Google Scholar 

  7. Haruta M, Okubo T, Masuo Y, Yoshida S, Tomita A, Takenaka T et al (2017) Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim Acta 224:186–193

    CAS  Google Scholar 

  8. Du F-H, Wang K-X, Chen J-S (2016) Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J Mater Chem A 4:32–50

    CAS  Google Scholar 

  9. Chen H, Hou X, Chen F, Wang S, Bo W, Qiang R et al (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440

    CAS  Google Scholar 

  10. Liu N, Lu Z, Zhao J, Mcdowell MT, Lee HW, Zhao W et al (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192

    CAS  Google Scholar 

  11. Chen Y, Liu L, Xiong J, Yang T, Qin Y, Yan C (2016) Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv Funct Mater 25:6701–6709

    Google Scholar 

  12. Yang S, Gu Y, Qu Q, Zhu G, Liu G, Battaglia VS et al (2018) Engineered Si@alginate microcapsule-graphite composite electrode for next generation high-performance lithium-ion batteries. Electrochim Acta 270:480–489

    CAS  Google Scholar 

  13. Gu Y, Yang S, Zhu G, Yuan Y, Qu Q, Wang Y et al (2018) The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim Acta 269:405–414

    CAS  Google Scholar 

  14. Choi JW, Hu L, Cui L, McDonough JR, Cui Y (2010) Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J Power Sources 195:8311–8316

    CAS  Google Scholar 

  15. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT et al (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315

    CAS  Google Scholar 

  16. Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed Engl 49:2146–2149

    CAS  Google Scholar 

  17. Gao B, Sinha S, Fleming L, Zhou O (2010) Alloy formation in nanostructured silicon. Adv Mater 13:816–819

    Google Scholar 

  18. Kim T, Park S, Oh SM (2007) Solid-state NMR and electrochemical dilatometry study on Li + uptake/extraction mechanism in SiO electrode. J Electrochem Soc 154:A1112–A1117

    CAS  Google Scholar 

  19. Luo Z, Xiao Q, Lei G, Li Z, Tang C (2016) Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries. Carbon 98:373–380

    CAS  Google Scholar 

  20. Jiao M, Liu K, Shi Z, Wang C (2016) SiO2/carbon composite microspheres with hollow core-shell structure as a high stability electrode for lithium ion batteries. Chemelectrochem 4:542–549

    Google Scholar 

  21. Morita T, Takami N (2006) Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc 153:A425–A430

    CAS  Google Scholar 

  22. Choi I, Min JL, Oh SM, Kim JJ (2012) Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: dynamics and component analysis by TEM. Electrochim Acta 85:369–376

    CAS  Google Scholar 

  23. Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J et al (2015) Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale 7:8023–8034

    CAS  Google Scholar 

  24. Hao S, Wang Z, Chen L (2016) Amorphous SiO2 in tunnel-structured mesoporous carbon and its anode performance in Li-ion batteries. Mater Design 111:616–621

    CAS  Google Scholar 

  25. Ju Y, Tang JA, Zhu K, Meng Y, Wang C, Chen G et al (2016) SiOx/C composite from rice husks as an anode material for lithium-ion batteries. Electrochim Acta 191:411–416

    CAS  Google Scholar 

  26. Zhang H, Jing S, Hu Y, Jiang H, Li C (2016) A flexible freestanding Si/rGO hybrid film anode for stable Li-ion batteries. J Power Sources 307:214–219

    CAS  Google Scholar 

  27. Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H et al (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356:599–604

    CAS  Google Scholar 

  28. Liu H, Guo H, Liu B, Liang M, Lv Z, Adair KR et al (2018) Few-Layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv Funct Mater 28:1707480

    Google Scholar 

  29. Meng J, Yuan C, Yang S, Liu Y, Zhang J, Zheng X (2015) Facile Fabrication of 3D SiO2@graphene aerogel composites as anode material for lithium ion batteries. Electrochim Acta 176:1001–1009

    CAS  Google Scholar 

  30. Lin D, Yuen PY, Liu Y, Liu W, Cui Y (2018) A Silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30:1802661

    Google Scholar 

  31. Cai D, Wang S, Lian P, Zhu X, Li D, Yang W et al (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim Acta 90:492–497

    CAS  Google Scholar 

  32. Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915

    CAS  Google Scholar 

  33. Liu H, Liu B, Guo H, Liang M, Zhang Y, Borjigin T et al (2018) N-doped C-encapsulated scale-like yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy 51:639–648

    CAS  Google Scholar 

  34. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193

    CAS  Google Scholar 

  35. Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R et al (2011) Nitrogen doping effects on the structure of graphene. Appl Surf Sci 257:9193–9198

    CAS  Google Scholar 

  36. Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825

    CAS  Google Scholar 

  37. Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434

    CAS  Google Scholar 

  38. Wei L, Chen X, Yuan X, Miao C, Wang L, Wang Q et al (2017) Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv Energy Mater 7:1701083

    Google Scholar 

  39. Kai-Xue W, Xin-Hao L, Jie-Sheng C (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527–545

    Google Scholar 

  40. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    CAS  Google Scholar 

  41. Hassan FM, Batmaz R, Li J, Wang X, Xiao X, Yu A et al (2015) Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. Nat Commun 6:8597

    CAS  Google Scholar 

  42. Furquan M, Khatribail AR, Vijayalakshmi S, Mitra S (2018) Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery. J Power Sources 382:56–68

    CAS  Google Scholar 

  43. Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437

    CAS  Google Scholar 

  44. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    CAS  Google Scholar 

  45. David L, Bhandavat R, Barrera U, Singh G (2016) Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat Commun 7:10998

    CAS  Google Scholar 

  46. Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    CAS  Google Scholar 

  47. Li H, Shen L, Wang J, Ding B, Nie P, Xu G et al (2014) Design of a nitrogen-doped, carbon-coated Li4Ti5O12 nanocomposite with a core-shell structure and its application for high-rate lithium-ion batteries. ChemPlusChem 79:128–133

    CAS  Google Scholar 

  48. Su J, Zhao J, Li L, Zhang C, Chen C, Huang T et al (2017) Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes As anode materials for Li-ion batteries. ACS Appl Mater Interfaces 9:17807

    CAS  Google Scholar 

  49. Zhong X, Yang Z, Liu X, Wang J, Gu L, Yu Y (2015) General Strategy for fabricating sandwich-like graphene-based hybrid films for highly reversible lithium storage. ACS Appl Mater Interfaces 7:18320

    CAS  Google Scholar 

  50. Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon Solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412

    CAS  Google Scholar 

  51. Kim K, Kim MS, Choi H, Min KS, Kim KD, Kim JH (2017) Si-SiOx-Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries. Electron Mater Lett 13:1–8

    Google Scholar 

  52. Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626

    CAS  Google Scholar 

  53. Lv P, Zhao H, Gao C, Du Z, Wang J, Liu X (2015) SiOx–C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. J Power Sources 274:542–550

    CAS  Google Scholar 

  54. Zhao X, Li M, Chang KH, Lin YM (2014) Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res 7:1429–1438

    CAS  Google Scholar 

  55. Pang G, Yuan C, Nie P, Zhu J, Zhang X, Li H et al (2016) Design of nanoconfined MWNTs@NaTi2(PO4)3 coaxial cables with superior rate capability and long-cycle life for Na-ion batteries. Appl Mater Today 4:54–61

    Google Scholar 

  56. Ko M, Chae S, Jeong S, Oh P, Cho J (2012) Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 8:8591

    Google Scholar 

  57. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518

    CAS  Google Scholar 

  58. Yang J, Ju Z, Jiang Y, Xing Z, Xi B, Feng J et al (2017) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104

    Google Scholar 

  59. Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507

    Google Scholar 

  60. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929

    CAS  Google Scholar 

  61. Simon P, Largeot C, Chmiola J, Lin R, Taberna P-L, Gogotsi Y (2008) Charge storage mechanism in sub-nanometer pores and its consequence for electrical double layer capacitors. meeting abstracts. MA2008-02, 498

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central University 2018XKQYMS22.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Zheng or Zhicheng Ju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Zheng, X., Deng, Y. et al. SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries. J Mater Sci 55, 13023–13035 (2020). https://doi.org/10.1007/s10853-020-04905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04905-y

Navigation