Skip to main content
Log in

Fabrication of porous tin dioxide with enhanced gas-sensing performance toward NOx

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel approach for preparing porous tin dioxide material by sol–gel hard template method was proposed in this study. The aerogel technology was used to synthesize the porous SnO2 and improve the porosity. The prepared material possesses excellent gas-sensing performance to NOx at room temperature, which has high sensitivity, excellent selectivity and fast response time. At room temperature, the maximum value toward 100 ppm NOx gas gets to 54%, and corresponding response time is only 19.5 s. The response time of the prepared sensor always remains within 26 s in NOx concentration ranging from 5 to 100 ppm. In the meantime, the response and response time for NOx at 5 ppm (the lowest detectable of the sensor) are 40% and 26 s, respectively. The prepared material can be used as a matrix material for gas-sensoring composites and has a very good development prospect in gas sensors’ field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure  1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Li Z, Wang X, Lin T (2014) Highly sensitive SnO2 nanofiber chemiresistors with a low optimal operating temperature: synergistic effect of Cu2+/Au co-doping. J. Mater. Chem. A 2:13655–13660. https://doi.org/10.1039/c4ta01926a

    Article  CAS  Google Scholar 

  2. Shao S, Wu H, Jiang F, Wang S, Wu T, Lei Y, Koehn R, Rao WF (2016) Regulable switching from p- to n-type behavior of ordered nanoporous Pt-SnO2 thin films with enhanced room temperature toluene sensing performance. RSC. Adv. 6:22878–22888. https://doi.org/10.1039/c5ra24736e

    Article  CAS  Google Scholar 

  3. Shao S, Wu H, Wang S, Hong Q, Koehn R, Wu T, Rao WF (2015) Highly crystalline and ordered nanoporous SnO2 thin films with enhanced acetone sensing property at room temperature. J. Mater. Chem. C. 3:10819–10829. https://doi.org/10.1039/c5tc02188j

    Article  CAS  Google Scholar 

  4. Hoa N, El-Safty SA (2011) Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors. J. Phys. Chem. C. 115:8466–8474. https://doi.org/10.1021/jp1116189

    Article  CAS  Google Scholar 

  5. Li S, Liu T, Zhang Y, Zeng W, Pan F, Peng X (2015) Hydrothermal synthesis of the sealed ZnO nanotube and its growth mechanism. Mater. Lett. 143:12–15. https://doi.org/10.1016/j.matlet.201412053

    Article  CAS  Google Scholar 

  6. Li WQ, Ma SY, Luo J, Mao YZ, Cheng L, Gengzang DJ, Xu XL, Yan SH (2014) Synthesis of hollow SnO2 nanobelts and their application in acetone sensor. Mater. Lett. 132:338–341. https://doi.org/10.1016/j.matlet.201406112

    Article  CAS  Google Scholar 

  7. Lee I, Choi SJ, Park KM, Lee SS, Choi S, Kim ID, Park CO (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens. Actuators. B 197:300–307. https://doi.org/10.1016/j.snb.201402043

    Article  CAS  Google Scholar 

  8. Bamsaoud SF, Rane SB, Karekar RN, Aiyer RC (2011) Nano particulate SnO2 based resistive films as a hydrogen and acetone vapour sensor. Sens. Actuators. B. 153:382–391. https://doi.org/10.1016/j.snb.2010.11.003

    Article  CAS  Google Scholar 

  9. Meng F, Qin W, Li B, Zhang H, Wang S et al (2019) Synthesis of Au nanoparticle-modified spindle shaped α-Fe2O3 nanorods and their gas sensing properties to N-butanol. IEEE. T. Nanotechnol. 18:911–920. https://doi.org/10.1109/tnano.2019.2933569

    Article  CAS  Google Scholar 

  10. Yuan Z, Zhang J, Meng F, Li Y, Li R et al (2018) Highly sensitive ammonia sensors based on Ag-decorated WO3 nanorods. IEEE. T. Nanotechnol. 6(17):1252–1258. https://doi.org/10.1109/tnano.2018.2871675

    Article  CAS  Google Scholar 

  11. Yuan Z, Zhang S, Meng F, Zhang H et al (2020) Investigation of grain radius dependence of sensitivity for porous thin film semiconducting metal oxide gas sensor. IEEE. Sens. J. 8(20):4275–4282. https://doi.org/10.1109/jsen.2019.2961388

    Article  Google Scholar 

  12. Yuan Z, Zhang J, Meng F, Qin W et al (2019) Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. J. Alloy. Compd. 793:24–30. https://doi.org/10.1016/j.jallcom.2019.03.386

    Article  CAS  Google Scholar 

  13. Yan Q, Tao S, Toghiani H (2009) Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples. Talanta 77:953–961. https://doi.org/10.1016/j.talanta.200807066

    Article  CAS  Google Scholar 

  14. Mishra RK, Kushwaha A, Sahay PP (2014) Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC. Adv. 4:3904–3912. https://doi.org/10.1039/c3ra43709d

    Article  CAS  Google Scholar 

  15. Gattu KP, Ghule K, Kashale AA, Patil VB, Phase DM, Mane RS, Han SH, Sharma R, Ghule AV (2015) Bio-green synthesis of Ni-doped tin oxide nanoparticles and its influence on gas sensing properties. RSC. Adv. 5:72849–72856. https://doi.org/10.1039/c5ra13513c

    Article  CAS  Google Scholar 

  16. Lou Z, Wang L, Wang R, Fei T, Zhang T (2012) Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route. Solid State Electron 76:91–94. https://doi.org/10.1016/j.sse.2012.05.062

    Article  CAS  Google Scholar 

  17. Chen M, Zhang C, Li L, Liu Y, Li X, Xu X, Xia F, Wang W, Gao J (2013) Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles. ACS. Appl. Mater. Interfaces. 5:13333–13339. https://doi.org/10.1021/am404195u

    Article  CAS  Google Scholar 

  18. Qin G, Gao F, Jiang Q, Li Y, Liu Y, Luo L, Zhao K, Zhao H (2016) Well-aligned Nd-doped SnO2 nanorod layered arrays: preparation, characterization and enhanced alcohol-gas sensing performance. Phys. Chem. Chem. Phys. 18:5537–5549. https://doi.org/10.1039/c5cp07174g

    Article  CAS  Google Scholar 

  19. Katoch A, Kim JH, Kwon YJ, Kim HW, Kim SS (2015) Bifunctional sensing mechanism of SnO2-ZnO composite nanofibers for drastically enhancing the sensing behavior in H2 gas. ACS. Appl. Mater. Interfaces. 7:11351–11358. https://doi.org/10.1021/acsami.5b01817

    Article  CAS  Google Scholar 

  20. Shi L, Lin H (2011) Preparation of band gap tunable SnO2 nanotubes and their ethanol sensing properties. Langmuir 27:3977–3981. https://doi.org/10.1021/la104529h

    Article  CAS  Google Scholar 

  21. Wang S, Yang J, Zhang H, Wang Y, Gao X, Wang L, Zhu Z (2015) One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor. Sens. Actuators. B 207:83–89. https://doi.org/10.1016/j.snb.2014.10.032

    Article  CAS  Google Scholar 

  22. Tao T, He L, Li J, Zhang Y (2015) A new way for synthesizing SnO2 nanosheets. Mater. Lett. 138:45–47. https://doi.org/10.1016/j.matlet.2014.09.112

    Article  CAS  Google Scholar 

  23. Wang L, Deng J, Lou Z, Zhang T (2014) Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. J. Mater. Chem. A 2:10022–10028. https://doi.org/10.1039/c4ta00651h

    Article  CAS  Google Scholar 

  24. Cho YH, Liang X, Kang YC, Lee JH (2015) Ultrasensitive detection of trimethylamine using Rh-doped SnO2 hollow spheres prepared by ultrasonic spray pyrolysis. Sens. Actuators. B 207:330–337. https://doi.org/10.1016/j.snb.2014.10.001

    Article  CAS  Google Scholar 

  25. Wang L, Fei T, Lou Z, Zhang T (2011) Three-dimensional hierarchical flowerlike alpha-Fe2O3 nanostructures: synthesis and ethanol-sensing properties. ACS. Appl. Mater. Interfaces 3:4689–4694. https://doi.org/10.1021/am201112z

    Article  CAS  Google Scholar 

  26. Huang J, Wang L, Gu C, Shim JJ (2014) Preparation of hollow porous SnO2 microcubes and their gas-sensing property. Mater. Lett. 136:371–374. https://doi.org/10.1016/j.matlet.201408015

    Article  CAS  Google Scholar 

  27. Huang J, Wang L, Gu C, Zhai M, Liu J (2013) Preparation of hollow porous Co-doped SnO2 microcubes and their enhanced gas sensing property. Cryst. Eng. Comm. 15:7515–7521. https://doi.org/10.1039/c3ce41148f

    Article  CAS  Google Scholar 

  28. Song HJ, Jia XH, Qi H, Yang XF, Tang H, Min CY (2012) Flexible morphology-controlled synthesis of monodisperse alpha-Fe2O3 hierarchical hollow microspheres and their gas-sensing properties. J. Mater. Chem. 22:3508–3516. https://doi.org/10.1039/c2jm13574d

    Article  CAS  Google Scholar 

  29. Ma G, Zou R, Jiang L, Zhang Z, Xue Y, Yu L, Song G, Li W, Hu J (2012) Phase-controlled synthesis and gas-sensing properties of zinc stannate (ZnSnO3 and Zn2SnO4) faceted solid and hollow microcrystals. Cryst. Eng. Comm. 14:2172–2179. https://doi.org/10.1039/c2ce06272k

    Article  CAS  Google Scholar 

  30. Jiao Q, Fu M, You C, Zhao Y, Li H (2012) Preparation of hollow Co3O4 microspheres and their ethanol sensing properties. Inorg. Chem. 51:11513–11520. https://doi.org/10.1021/ic3013602

    Article  CAS  Google Scholar 

  31. Lu S, Xia L, Xu JM, Ding CH, Li TT, Yang H, Zhong B, Zhang T, Huang LN, Xiong L, Huang X, Wen GW (2019) A permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium–aluminum–silicate (LAS)/rGO nanocomposite. ACS. Appl. Mater. Interfaces 11:18626–18636. https://doi.org/10.1021/acsami.9b00348

    Article  CAS  Google Scholar 

  32. Yang YN, Xia L, Zhang T, Shi B, Huang LN, Zhong B, Zhang XY, Wang HT, Zhang J, Wen GW (2018) Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352:510–518. https://doi.org/10.1016/j.cej.2018.07.064

    Article  CAS  Google Scholar 

  33. Andio MA, Browning PN, Morris PA, Akbar SA (2012) Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sens. Actuators B. https://doi.org/10.1016/j.snb.2011.12.045

    Article  Google Scholar 

  34. Xue KY, Chen DR, Jiao XL (2010) Fabrication of crystalline pores metal dioxides and sulfides. Inorg. Chem. 49:1191–1197. https://doi.org/10.1021/ic902160m

    Article  CAS  Google Scholar 

  35. Xu S, Gao J, Wang L, Kan K, Xie Y, Shen P, Li L, Shi K (2015) Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7:14643–14651. https://doi.org/10.1039/c5nr03796d

    Article  CAS  Google Scholar 

  36. Periyasamy M, Kar A (2020) Modulating the properties of SnO2 nanocrystals: morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. J. Mater. Chem. C. 14(8):4604–4635. https://doi.org/10.1039/c9tc06469a

    Article  CAS  Google Scholar 

  37. Zhang J, Guo J, Xu H, Cao B (2013) Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance. ACS. Appl. Mater. Interfaces 5:7893–7898. https://doi.org/10.1021/am4019884

    Article  CAS  Google Scholar 

  38. Wang X, Wang Y, Tian F, Liang H, Wang K, Zhao X, Lu Z, Jiang K, Yang L, Lou X (2015) From the surface reaction control to gas-diffusion control: the synthesis of hierarchical porous SnO2 microspheres and their gas-sensing mechanism. J. Phys. Chem. C 119:15963–15976. https://doi.org/10.1021/acs.jpcc.5b01397

    Article  CAS  Google Scholar 

  39. Xu S, Sun F, Gu F, Zuo Y, Zhang L, Fan C, Yang S, Li W (2014) Photochemistry-based method for the fabrication of SnO2 monolayer ordered porous films with size-tunable surface pores for direct application in resistive-type gas sensor. ACS. Appl. Mater. Interfaces 6:1251–1257. https://doi.org/10.1021/am4050844

    Article  CAS  Google Scholar 

  40. Long H, Harley-Trochimczyk A, He T, Thang P, Tang Z, Sho T, Zettl A, Mickelson W, Carraro C, Maboudian R (2016) In situ localized growth of porous tin oxide films on low power microheater platform for low temperature CO detection. ACS Sens. 1:339–343. https://doi.org/10.1021/acssensors.5b00302

    Article  CAS  Google Scholar 

  41. Li TT, Zheng RR, Yu H, Yang Y, Wang TT, Dong XT (2017) Synthesis of highly sensitive disordered porous SnO2 aerogel composite material by the chemical deposition method: synergistic effect of a layer of CuO thin film. RSC. Adv. 7:39334–39340. https://doi.org/10.1039/c7ra06415b

    Article  CAS  Google Scholar 

  42. Kim HJ, Jo SB, Ahn JH (2019) SnO2 nanowire gas sensors for detection of ppb level NOx gas. J. Int. Adsorption Soc. 6:1259–1269. https://doi.org/10.1007/s10450-019-00105-6

    Article  CAS  Google Scholar 

  43. Zhang HN, Zhuo M, Luo YZ (2017) Mesoporous tin oxide nanospheres for a NOx in air sensor. J. Semicond. 2:38. https://doi.org/10.1088/1674-4926/38/2/023003

    Article  CAS  Google Scholar 

  44. Yang LX, Li L, Yang Y, Zhang G, Gong LH, Jing LQ, Fu HG, Shi KY (2013) Facile synthesis of Cu/CuxO nanoarchitectures with adjustable phase composition for effective NOx gas sensor at room temperature. Mater. Res. Bull. 48:3657–3665. https://doi.org/10.1016/j.materresbull.2013.05.011

    Article  CAS  Google Scholar 

  45. Wu HY, Kan K, Wang LL, Zhang G, Yang Y, Li H, Jing LQ, Shen PK, Li L, Shi KY (2014) Electrospinning of mesoporous p-type In2O3/TiO2 composite nanofibers for enhancing NOx gas sensing properties at room temperature. Cryst. Eng. Comm. 16:9116–9124. https://doi.org/10.1039/c4ce01248h

    Article  CAS  Google Scholar 

  46. Liu N, Yu H, Yang Y, Dong X (2020) Fabrication of 3D multi-edges cube porous SnO2/ZnO composites as high-performance NOx gas sensor. IEEE. Sens. J. 6(20):2852–2859. https://doi.org/10.1109/jsen.2019.2957168

    Article  Google Scholar 

  47. Li W, Kan K, He L et al (2020) Biomorphic synthesis of 3D mesoporous SnO2 with substantially increased gas-sensing performance at room temperature using a simple one-pot hydrothermal method. Appl. Surf. Sci. 512:145657–145668. https://doi.org/10.1016/j.apsusc.2020.145657

    Article  CAS  Google Scholar 

  48. Yang Y, Sun L, Dong X, Yu H, Wang T, Wang J, Wang R, Yu W, Liu G (2016) Fe3O4/rGO nanocomposite: synthesis and enhanced NOx gas-sensing properties at room temperature. RSC. Adv. 6:37085–37092. https://doi.org/10.1039/c6ra02306a

    Article  CAS  Google Scholar 

  49. Gao F, Qin G, Li Y, Jiang Q, Luo L, Zhao K, Liu Y, Zhao H (2016) One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas-sensing performance toward acetone. RSC. Adv. 6:10298–10310. https://doi.org/10.1039/c5ra27270j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the work by the National Natural Science Foundation of China (Grant No. 51621091, 51872058, 51772060 and 51972078), Key Laboratory of Advanced Structural–Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, China.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Long Xia.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TT., Xia, L., Yu, H. et al. Fabrication of porous tin dioxide with enhanced gas-sensing performance toward NOx. J Mater Sci 55, 11949–11958 (2020). https://doi.org/10.1007/s10853-020-04892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04892-0

Navigation