Skip to main content
Log in

Colorimetric determination of dopamine using an electrospun nanofibrous membrane decorated with gold nanoparticles

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study reports the preparation of a flexible nanofibrous probe for the rapid colorimetric detection of dopamine. To this aim, gold nanoparticles (AuNPs) were immobilized on the surface of electrospun nanofibrous membrane to obtain a new hybrid material. This hybrid structure would benefit from the properties of both nanofibers and AuNP, being (a) the porosity and high surface area of nanofibers, and (b) the unique optical properties of AuNP. The electrospun poly(ethylene terephthalate) (PET) nanofibrous membrane was alkaline treated in NaOH aqueous solution, followed by immersion in the AuNP solution. The morphology of AuNP-PET membranes was characterized using a field emission scanning electron microscopy. The AuNP-PET probes showed quick, visible color change (from red to dark blue) in the presence of dopamine at the physiological pH values. The visual detection limit was 0.5 μM. The color difference based on the formula of the L*a*b* color space was used to quantify the concentration of dopamine. The color difference increased almost linearly in the 0.5–500 µM concentration range. The presence of electrostatically adsorbed AuNP on the surface of nanofibers, along with the flexibility of the nanofibrous membrane, was responsible for fast, sensitive, and on-site detection of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Marega C, Maculan J, Rizzi GA, Saini R, Cavaliere E, Gavioli L, Cattelan M, Giallongo G, Marigo A, Granozzi G (2015) Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines. Nanotechnology 26(7):075501

    Article  Google Scholar 

  2. Gorbunova MV, Apyari VV, Zolotov II, Dmitrienko SG, Garshev AV, Volkov PA, Bochenkov VE (2019) A new nanocomposite optical sensor based on polyurethane foam and gold nanorods for solid-phase spectroscopic determination of catecholamines. Gold Bull 52(3–4):115–124

    CAS  Google Scholar 

  3. Wang X, Wu M, Tang W, Zhu Y, Wang L, Wang Q, He P, Fang Y (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode. J Electroanal Chem 15(695):10–16

    Article  Google Scholar 

  4. Gare M, Haviv YS, Ben-Yehuda A, Rubinger D, Bdolah-Abram T, Fuchs S, Gat O, Popovtzer MM, Gotsman MS, Mosseri M (1999) The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography. J Am Coll Cardiol 34(6):1682–1688

    Article  CAS  Google Scholar 

  5. Xu J, Li Y, Wang L, Huang Y, Liu D, Sun R, Luo J, Sun C (2015) A facile aptamer-based sensing strategy for dopamine through the fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. Dyes Pigm 1(123):55–63

    Article  Google Scholar 

  6. Peng J, Han CL, Ling J, Liu CJ, Ding ZT, Cao QE (2018) Selective fluorescence quenching of papain–Au nanoclusters by self-polymerization of dopamine. Luminescence 33(1):168–173

    Article  CAS  Google Scholar 

  7. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182(5–6):1003–1008

    Article  CAS  Google Scholar 

  8. Gorbunova MV, Apyari VV, Dmitrienko SG, Garshev AV (2016) Formation of core-shell Au@ Ag nanorods induced by catecholamines: a comparative study and an analytical application. Anal Chim Acta 14(936):185–194

    Article  Google Scholar 

  9. Palanisamy S, Zhang X, He T (2015) Fast, sensitive and selective colorimetric gold bioassay for dopamine detection. J Mater Chem B 3(29):6019–6025

    Article  CAS  Google Scholar 

  10. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  11. Gualandi C, Celli A, Zucchelli A, Focarete ML (2014) Nanohybrid materials by electrospinning. In: Organic-inorganic hybrid nanomaterials. Springer, Cham, pp 87–142

    Google Scholar 

  12. Liu Z, Yan Z, Jia L, Song P, Mei L, Bai L, Liu Y (2017) Gold nanoparticle decorated electrospun nanofibers: a 3D reproducible and sensitive SERS substrate. Appl Surf Sci 1(403):29–34

    Article  Google Scholar 

  13. Senthamizhan A, Balusamy B, Aytac Z, Uyar T (2016) Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2. Anal Bioanal Chem 408(5):1347–1355

    Article  CAS  Google Scholar 

  14. Senthamizhan A, Celebioglu A, Balusamy B, Uyar T (2015) Immobilization of gold nanoclusters inside porous electrospun fibers for selective detection of Cu (II): a strategic approach to shielding pristine performance. Sci Rep 22(5):15608

    Article  Google Scholar 

  15. Sapountzi E, Braiek M, Vocanson F, Chateaux JF, Jaffrezic-Renault N, Lagarde F (2017) Gold nanoparticles assembly on electrospun poly (vinyl alcohol)/poly (ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sens Actuators B Chem 1(238):392–401

    Article  Google Scholar 

  16. Chen C, Tang Y, Vlahovic B, Yan F (2017) Electrospun polymer nanofibers decorated with noble metal nanoparticles for chemical sensing. Nanoscale Res Lett 12(1):451

    Article  Google Scholar 

  17. Korivi NS (2015) Preparation, characterization, and applications of poly (ethylene terephthalate) nanocomposites. In: Manufacturing of nanocomposites with engineering plastics. Woodhead Publishing, pp 167–198

  18. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26(15):2527–2536

    Article  CAS  Google Scholar 

  19. Hadjizadeh A, Ajji A, Jolicoeur M, Liberelle B, De Crescenzo G (2013) Effects of electrospun nanostructure versus microstructure on human aortic endothelial cell behavior. J Biomed Nanotechnol 9(7):1195–1209

    Article  CAS  Google Scholar 

  20. Ngomane N, Torto N, Krause R, Vilakazi S (2015) A colorimetric probe for dopamine based on gold nanoparticles-electrospun nanofibre composite. Mater Today Proc 2(7):4060–4069

    Article  Google Scholar 

  21. Hadjizadeh A, Ajji A, Bureau MN (2011) Nano/micro electro-spun polyethylene terephthalate fibrous mat preparation and characterization. J Mech Behav Biomed Mater 4(3):340–351

    Article  Google Scholar 

  22. Ng R, Zhang X, Liu N, Yang ST (2009) Modifications of nonwoven polyethylene terephthalate fibrous matrices via NaOH hydrolysis: effects on pore size, fiber diameter, cell seeding and proliferation. Process Biochem 44(9):992–998

    Article  CAS  Google Scholar 

  23. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707

    Article  CAS  Google Scholar 

  24. Khalafalla MA, Mesli A, Widattallah HM, Sellai A, Al-Harthi S, Al-Lawati HA, Suliman FO (2014) Size-dependent conductivity dispersion of gold nanoparticle colloids in a microchip: contactless measurements. J Nanopart Res 16(8):2546

    Article  Google Scholar 

  25. Amendola V, Pilot R, Frasconi M, Marago OM, Iati MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys: Condens Matter 29(20):203002

    Google Scholar 

  26. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Anal Chem 79(11):4215–4221

    Article  CAS  Google Scholar 

  27. Bellino MG, Calvo EJ, Gordillo G (2004) Adsorption kinetics of charged thiols on gold nanoparticles. Phys Chem Chem Phys 6(2):424–428

    Article  CAS  Google Scholar 

  28. Apyari VV, Arkhipova VV, Gorbunova MV, Volkov PA, Isachenko AI, Dmitrienko SG, Zolotov YA (2016) Towards the development of solid-state platform optical sensors: aggregation of gold nanoparticles on polyurethane foam. Talanta 1(161):780–788

    Article  Google Scholar 

  29. Pruneanu S, Biris AR, Pogacean F, Socaci C, Coros M, Rosu MC, Watanabe F, Biris AS (2015) The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochim Acta 1(154):197–204

    Article  Google Scholar 

  30. Zhang Y, Li B, Xu C (2010) Visual detection of ascorbic acid via alkyne–azide click reaction using gold nanoparticles as a colorimetric probe. Analyst 135(7):1579–1584

    Article  CAS  Google Scholar 

  31. Manjunatha H, Nagaraju DH, Suresh GS, Venkatesha TV (2009) Detection of uric acid in the presence of dopamine and high concentration of ascorbic acid using PDDA modified graphite electrode. Electroanal Int J Devoted Fundam Pract Asp Electroanal 21(20):2198–2206

    CAS  Google Scholar 

  32. Zhang Y, Li B, Chen X (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168(1–2):107–113

    Article  CAS  Google Scholar 

  33. Yusoff N, Pandikumar A, Ramaraj R, Lim HN, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182(13–14):2091–2114

    Article  CAS  Google Scholar 

  34. Rotaru R, Savin M, Tudorachi N, Peptu C, Samoila P, Sacarescu L, Harabagiu V (2018) Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polym Chem 9(7):860–868

    Article  CAS  Google Scholar 

  35. Park JY, Myung SW, Kim I, Choi DK, Kwon SJ, Yoon SH (2012) Simultaneous measurement of serotonin, dopamine and their metabolites in mouse brain extracts by high-performance liquid chromatography with mass spectrometry following derivatization with ethyl chloroformate. Biol Pharm Bull 36(2):252–258

    Article  Google Scholar 

  36. Guo L, Zhang Y, Li Q (2009) Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe (III). Anal Sci 25(12):1451–1455

    Article  CAS  Google Scholar 

  37. Josypčuk O, Barek J, Josypčuk B (2018) Amperometric determination of catecholamines by enzymatic biosensors in flow systems. Electroanalysis 30(6):1163–1171

    Article  Google Scholar 

  38. Tao Y, Lin Y, Ren J, Qu X (2013) A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters. Biosens Bioelectron 15(42):41–46

    Article  Google Scholar 

  39. Wang HB, Li Y, Dong GL, Gan T, Liu YM (2017) A convenient and label-free colorimetric assay for dopamine detection based on the inhibition of the Cu(ii)-catalyzed oxidation of a 3, 3′, 5, 5′-tetramethylbenzidine–H2O2 system. New J Chem 41(23):14364–14369

    Article  CAS  Google Scholar 

Download references

Funding

The funding was provided by Amirkabir University of Technology (Grant No. GN1396-97).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afra Hadjizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, A., Hadjizadeh, A. & Mahshid, S. Colorimetric determination of dopamine using an electrospun nanofibrous membrane decorated with gold nanoparticles. J Mater Sci 55, 7969–7980 (2020). https://doi.org/10.1007/s10853-020-04547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04547-0

Navigation