Skip to main content

Advertisement

Log in

Post-graphene 2D materials-based antimicrobial agents: focus on fabrication strategies and biosafety assessments

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bacterial infections have caused serious threats to public health nowadays because of the generation of antibiotics-resistant bacteria. Recently, new 2D materials beyond graphene (post-graphene 2D materials, pg-2DMs), such as transition metal dichalcogenides, black phosphorus, layered double hydroxides and MXenes, have been intensively explored for antimicrobial applications on account of their superior physiochemical properties. Here, we provide an up-to-date overview of the post-graphene 2D materials-based antimicrobial agents (pg-2DMs-AA), focusing on (1) the strategies to improve the antimicrobial activities of pg-2DMs-AA and (2) the biosafety assessments of pg-2DMs-AA. Finally, insights regarding the current gaps and outlooks for future opportunities in this field are given as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rutledge-Taylor K, Matlow A, Gravel D et al (2012) A point prevalence survey of health care-associated infections in Canadian pediatric inpatients. Am J Infect Control 40:491–496

    Google Scholar 

  2. Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D (2011) Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet 377:228–241

    Google Scholar 

  3. Kraker MEAd, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13:e1002184

    Google Scholar 

  4. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern 2015:246012

    Google Scholar 

  5. Miao H, Teng Z, Wang C, Chong H, Wang G (2019) Recent progress in two-dimensional antimicrobial nanomaterials. Chem Eur J 25:929–944

    CAS  Google Scholar 

  6. Sun W, Wu F-G (2018) Two-dimensional materials for antimicrobial applications: graphene materials and beyond. Chem Asian J 13:3378–3410

    CAS  Google Scholar 

  7. Zhang X, Zhang W, Liu L et al (2017) Antibiotic-loaded MoS2 nanosheets to combat bacterial resistance via biofilm inhibition. Nanotechnology 28:225101

    Google Scholar 

  8. Yuwen L, Sun Y, Tan G et al (2018) MoS2@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. Nanoscale 10:16711–16720

    CAS  Google Scholar 

  9. Sun ZY, Zhang YQ, Yu H et al (2018) New solvent-stabilized few-layer black phosphorus for antibacterial applications. Nanoscale 10:12543–12553

    CAS  Google Scholar 

  10. Shao JD, Ruan CS, Xie HH, Li ZB, Wang HY, Chu PK, Yu XF (2018) Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv Sci 5:1700848

    Google Scholar 

  11. Yang QZ, Chang YY, Zhao HZ (2013) Preparation and antibacterial activity of lysozyme and layered double hydroxide nanocomposites. Water Res 47:6712–6718

    CAS  Google Scholar 

  12. Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y (2017) Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep UK 7:1598

    Google Scholar 

  13. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA (2016) Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10:3674–3684

    CAS  Google Scholar 

  14. Meenakshisundaram I, Kalimuthu S, Priya PG, Karthikeyan S (2019) Facile green synthesis and antimicrobial performance of Cu2O nanospheres decorated g-C3N4 nanocomposite. Mater Res Bull 112:331–335

    Google Scholar 

  15. Zhao HX, Yu HT et al (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B Environ 152:46–50

    Google Scholar 

  16. Zhu C, Shen H, Liu H, Lv X, Li Z, Yuan Q (2018) Solution-processable two-dimensional In2Se3 nanosheets as efficient photothermal agents for elimination of bacteria. Chemistry 24:19060–19065

    CAS  Google Scholar 

  17. Francois P, Andreia Fonseca DF, Siamak N, Menachem EJAN (2015) Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9:7226–7236

    Google Scholar 

  18. Shaobin L, Ming H, Tingying Helen Z et al (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28:12364–12372

    Google Scholar 

  19. Yang X, Li J, Liang T et al (2014) Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6:10126–10133

    CAS  Google Scholar 

  20. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Google Scholar 

  21. Zhang Y, Chang TR, Zhou B et al (2014) Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9:111–115

    CAS  Google Scholar 

  22. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  23. Hai L, Jumiati W, Zongyou Y, Hua ZJACR (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075

    Google Scholar 

  24. Feng Z, Liu X, Tan L et al (2018) Electrophoretic deposited stable Chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 14:1704347

    Google Scholar 

  25. Zhang W, Shi S, Wang Y et al (2016) Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale 8:11642–11648

    CAS  Google Scholar 

  26. Pérez-Martínez P, Galvan-Miyoshi JM, Ortiz-López J (2016) Ultrasonic cavitation effects on the structure of graphene oxide in aqueous suspension. J Mater Sci 51:10782–10792. https://doi.org/10.1007/s10853-016-0290-0

    Article  CAS  Google Scholar 

  27. Niu LY, Coleman JN, Zhang H, Shin H, Chhowalla M, Zheng ZJ (2016) Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small 12:272–293

    CAS  Google Scholar 

  28. Muscuso L, Cravanzola S, Cesano F, Scarano D, Zecchina A (2015) Optical, vibrational, and structural properties of MoS2 nanoparticles obtained by exfoliation and fragmentation via ultrasound cavitation in isopropyl alcohol. J Phys Chem C 119:3791–3801

    CAS  Google Scholar 

  29. Han GQ, Liu YR, Hu WH et al (2015) WS2 nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction. Mater Chem Phys 167:271–277

    CAS  Google Scholar 

  30. Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948

    CAS  Google Scholar 

  31. Tan L, Li J, Liu XM et al (2018) In situ disinfection through photoinspired radical oxygen species storage and thermal-triggered release from black phosphorous with strengthened chemical stability. Small 14:1703197

    Google Scholar 

  32. Paredes JI, Villar-Rodil S (2016) Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. Nanoscale 8:15389–15413

    CAS  Google Scholar 

  33. Cai X, Luo Y, Liu B, Cheng HM (2018) Preparation of 2D material dispersions and their applications. Chem Soc Rev 47:6224–6266

    CAS  Google Scholar 

  34. Bang GS, Cho S, Son N, Shim GW, Cho BK, Choi SY (2016) DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect. ACS Appl Mater Interfaces 8:1943–1950

    CAS  Google Scholar 

  35. Huang XW, Wei JJ, Liu T, Zhang XL, Bai SM, Yang HH (2017) Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale 9:17193–17198

    CAS  Google Scholar 

  36. Cao W, Yue L, Wang Z (2019) High antibacterial activity of chitosan–molybdenum disulfide nanocomposite. Carbohyd Polym 215:226–234

    CAS  Google Scholar 

  37. Chou SS, De M, Kim J et al (2013) Ligand conjugation of chemically exfoliated MoS2. J Am Chem Soc 135:4584–4587

    CAS  Google Scholar 

  38. Pandit S, Karunakaran S, Boda SK, Basu B, De M (2016) High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl Mater Interfaces 8:31567–31573

    CAS  Google Scholar 

  39. Karunakaran S, Pandit S, Basu B, De M (2018) Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: applications in enhanced antibacterial activity. J Am Chem Soc 140:12634–12644

    CAS  Google Scholar 

  40. Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A (2019) Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J Control Release 299:1–20

    CAS  Google Scholar 

  41. Chen CS, Yu WW, Liu TG, Cao SY, Tsang YH (2017) Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications. Sol Energy Mater Sol Cells 160:43–53

    CAS  Google Scholar 

  42. Pandit S, Cao Z, Mokkapati VRSS et al (2018) Vertically aligned graphene coating is bactericidal and prevents the formation of bacterial biofilms. Adv Mater Interfaces 5:1701331

    Google Scholar 

  43. Lu XL, Feng XD, Werber JR et al (2017) Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci USA 114:E9793–E9801

    CAS  Google Scholar 

  44. Szunerits S, Boukherroub R (2016) Antibacterial activity of graphene-based materials. J Mater Chem B 4:6892–6912

    CAS  Google Scholar 

  45. Liu C, Kong D, Hsu PC et al (2016) Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol 11:1098–1104

    CAS  Google Scholar 

  46. Alimohammadi F, Sharifian MG, Attanayake NH, Thenuwara AC, Gogotsi Y, Anasori B, Strongin DR (2018) Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir 34:7192–7200

    CAS  Google Scholar 

  47. Liu Z, Wang XH, Qiao P, Tian Y, Li HJ, Yang J (2015) Uniformed polyaniline supported MoS2 nanorod: a photocatalytic hydrogen evolution and anti-bacteria material. J Mater Sci Mater Electron 26:7153–7158

    CAS  Google Scholar 

  48. Tang K, Wang L, Geng H, Qiu J, Cao H, Liu X (2017) Molybdenum disulfide (MoS2) nanosheets vertically coated on titanium for disinfection in the dark. Arab J Chem 13:1612–1623

    Google Scholar 

  49. Wu YX, Xu MQ, Chen X, Yang SL, Wu HS, Pan J, Xiong X (2016) CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale 8:440–450

    CAS  Google Scholar 

  50. Liu S, Liu Y, Lei WW, Zhou X, Xu K, Qiao QQ, Zhang WH (2018) Few-layered ReS2 nanosheets vertically aligned on reduced graphene oxide for superior lithium and sodium storage. J Mater Chem A 6:20267–20276

    CAS  Google Scholar 

  51. Yeonwoong J, Jie S, Yong S, Cha JJ (2014) Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS Nano 8:9550–9557

    Google Scholar 

  52. Jie Y, Li Q, Yufeng H et al (2010) Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 4:414–422

    Google Scholar 

  53. Wang S, Zhang HJ, Zhang D, Ma Y, Bi XF, Yang SB (2018) Vertically oriented growth of MoO3 nanosheets on graphene for superior lithium storage. J Mater Chem A 6:672–679

    CAS  Google Scholar 

  54. Yu WL, Chen JX, Shang TT, Chen LF, Gu L, Peng TY (2017) Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H-2 production. Appl Catal B Environ 219:693–704

    CAS  Google Scholar 

  55. Xia Y, Mathis TS, Zhao MQ et al (2018) Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557:409–412

    CAS  Google Scholar 

  56. Li RN, Xue TS, Bingre R, Gao YS, Louis B, Wang Q (2018) Microporous zeolite@vertically aligned Mg-Al layered double hydroxide core@shell structures with improved hydrophobicity and toluene adsorption capacity under wet conditions. ACS Appl Mater Interfaces 10:34834–34839

    CAS  Google Scholar 

  57. Xing HN, Lan YY, Zong Y, Sun Y, Zhu XH, Li XH, Zheng XL (2019) Ultrathin NiCo-layered double hydroxide nanosheets arrays vertically grown on Ni foam as binder-free high-performance supercapacitors. Inorg Chem Commun 101:125–129

    CAS  Google Scholar 

  58. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl Catal B Environ 225:51–75

    CAS  Google Scholar 

  59. An T, Zhao H, Wong PK (2017) Advances in photocatalytic disinfection. Springer, Berlin

    Google Scholar 

  60. Tian X, Sun Y, Fan S, Boudreau MD, Chen C, Ge C, Yin JJ (2019) Photogenerated charge carriers in molybdenum disulfide quantum dots with enhanced antibacterial activity. ACS Appl Mater Interfaces 11:4858–4866

    CAS  Google Scholar 

  61. Priyadharsan A, Shanavas S, Vasanthakumar V, Balamuralikrishnan B, Anbarasan PM (2018) Synthesis and investigation on synergetic effect of rGO-ZnO decorated MoS2 microflowers with enhanced photocatalytic and antibacterial activity. Colloid Surf A 559:43–53

    Google Scholar 

  62. Jo WK, Selvam NCS (2015) Enhanced visible light-driven photocatalytic performance of ZnO-g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite. J Hazard Mater 299:462–470

    CAS  Google Scholar 

  63. Habibi-Yangjeh A, Akhundi A (2016) Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. J Mol Catal A Chem 415:122–130

    CAS  Google Scholar 

  64. Lam SM, Sin JC, Mohamed AR (2016) A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater Sci Semicond Proc 47:62–84

    CAS  Google Scholar 

  65. Liu Y, Zeng XK, Hu XY, Hu J, Zhang XW (2019) Two-dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges. J Chem Technol Biotechnol 94:22–37

    CAS  Google Scholar 

  66. Li Z, Meng X, Zhang Z (2018) Recent development on MoS2-based photocatalysis: A review. J Photochem Photobiol C 35:39–55

    CAS  Google Scholar 

  67. Han B, Hu YH (2016) MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng 4:285–304

    CAS  Google Scholar 

  68. Parzinger E, Miller B, Blaschke B, Garrido JA, Ager JW, Holleitner A, Wurstbauer U (2015) Photocatalytic stability of single- and few-layer MoS2. ACS Nano 9:11302–11309

    CAS  Google Scholar 

  69. Chang K, Mei ZW, Wang T, Kang Q, Ouyang SX, Ye JH (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8:7078–7087

    CAS  Google Scholar 

  70. Wang TQ, Sun MZ, Sun HL, Shang J, Wong PK (2019) Efficient Z-scheme visible-light-driven photocatalytic bacterial inactivation by hierarchical MoS2-encapsulated hydrothermal carbonation carbon core-shell nanospheres. Appl Surf Sci 464:43–52

    CAS  Google Scholar 

  71. Feng Y, Liu L, Zhang J, Aslan H, Dong M (2017) Photoactive antimicrobial nanomaterials. J Mater Chem B 5:8631–8652

    CAS  Google Scholar 

  72. Miao Z, Fan L, Xie X, Ma Y, Xue J, He T, Zha Z (2019) Liquid exfoliation of atomically thin antimony selenide as an efficient two-dimensional antibacterial nanoagent. ACS Appl Mater Interfaces 11:26664–26673

    CAS  Google Scholar 

  73. Xu JW, Yao K, Xu ZK (2019) Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale 11:8680–8691

    CAS  Google Scholar 

  74. Liu G, Zou J, Tang Q et al (2017) Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic Therapy. ACS Appl Mater Interfaces 9:40077–40086

    CAS  Google Scholar 

  75. Ma K, Li Y, Wang Z et al (2019) Core–shell gold nanorod@layered double hydroxide nanomaterial with highly efficient photothermal conversion and its application in antibacterial and tumor therapy. ACS Appl Mater Interfaces 11:29630–29640

    CAS  Google Scholar 

  76. Lin Y, Han D, Li Y et al (2019) Ag2S@ WS2 heterostructure for rapid bacteria-killing using near-infrared light. ACS Sustain Chem Eng 7:14982–14990

    CAS  Google Scholar 

  77. Yang GC, Liu ZM, Li Y et al (2017) Facile synthesis of black phosphorus-Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis. Biomater Sci UK 5:2048–2055

    CAS  Google Scholar 

  78. Ma M, Liu X, Tan L et al (2019) Enhancing the antibacterial efficacy of low-dose gentamicin with 5 minute assistance of photothermy at 50 degrees C. Biomater Sci UK 7:1437–1447

    CAS  Google Scholar 

  79. Li MX, Sultanbawa Y, Xu ZP, Gu WY, Chen WY, Liu JY, Qian GR (2019) High and long-term antibacterial activity against Escherichia coli via synergy between the antibiotic penicillin G and its carrier ZnAl layered double hydroxide. Colloid Surface B 174:435–442

    CAS  Google Scholar 

  80. Komarala EP, Doshi S, Thiyagarajan S, Aslam M, Bahadur D (2018) Studies on drug release kinetics and antibacterial activity against drug-resistant bacteria of cefotaxime sodium loaded layered double hydroxide-fenugreek nanohybrid. New J Chem 42:129–136

    CAS  Google Scholar 

  81. Tang LP, Cheng HM, Cui SM, Wang XR, Song LY, Zhou W, Li SJ (2018) DL-mandelic acid intercalated Zn-Al layered double hydroxide: a novel antimicrobial layered material. Colloid Surface B 165:111–117

    CAS  Google Scholar 

  82. Mishra G, Dash B, Pandey S, Mohanty PP (2013) Antibacterial actions of silver nanoparticles incorporated Zn-Al layered double hydroxide and its spinel. J Environ Chem Eng 1:1124–1130

    CAS  Google Scholar 

  83. Bouaziz Z, Soussan L, Janot JM et al (2017) Structure and antibacterial activity relationships of native and amyloid fibril lysozyme loaded on layered double hydroxide. Colloid Surface B 157:10–17

    CAS  Google Scholar 

  84. Chang K, Hai X, Pang H et al (2016) Targeted synthesis of 2H-and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv Mater 28:10033–10041

    CAS  Google Scholar 

  85. Liu L, Wu J, Wu L et al (2018) Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat Mater 17:1108–1114

    CAS  Google Scholar 

  86. Voiry D, Salehi M, Silva R et al (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227

    CAS  Google Scholar 

  87. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    CAS  Google Scholar 

  88. Guiney LM, Wang X, Xia T, Nel AE, Hersam MC (2018) Assessing and mitigating the hazard potential of two-dimensional materials. ACS Nano 12:6360–6377

    CAS  Google Scholar 

  89. Fojtu M, Teo WZ, Pumera M (2017) Environmental impact and potential health risks of 2D nanomaterials. Environ Sci Nano 4:1617–1633

    CAS  Google Scholar 

  90. Pandit S, Karunakaran S, Boda SK, Basu B, De M (1944) High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl Mater Interfaces 8:31567–31573

    Google Scholar 

  91. Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10:11000–11011

    CAS  Google Scholar 

  92. Wang ZZ, Dong K, Liu Z et al (2017) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157

    CAS  Google Scholar 

  93. Chakraborti M, Jackson JK, Plackett D, Gilchrist SE, Burt HM (2012) The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics. J Mater Sci Mater Med 23:1705–1713

    CAS  Google Scholar 

  94. Pal A, Jana TK, Roy T, Pradhan A, Maiti R, Choudhury SM, Chatterjee K (2018) MoS2–TiO2 nanocomposite with excellent adsorption performance and high antibacterial activity. Chemistryselect 3:81–90

    CAS  Google Scholar 

  95. Marcato PD, Parizotto NV, Martinez DST et al (2013) New hybrid material based on layered double hydroxides and biogenic silver nanoparticles: antimicrobial activity and cytotoxic effect. J Brazil Chem Soc 24:266–272

    CAS  Google Scholar 

  96. Mao CY, Xiang YM, Liu XM et al (2018) Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 12:1747–1759

    CAS  Google Scholar 

  97. Zhang W, Mou Z, Wang Y et al (2019) Molybdenum disulfide nanosheets loaded with chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo. Mater Sci Eng C Mater 7:486–497

    Google Scholar 

  98. Eguchi K, Nagase H, Ozawa M et al (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738

    CAS  Google Scholar 

  99. Galdiero E, Siciliano A, Maselli V et al (2016) An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Int J Nanomed 11:4199–4211

    CAS  Google Scholar 

  100. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85

    CAS  Google Scholar 

  101. Nasrallah GK, Al-Asmakh M, Rasool K, Mahmoud KA (2018) Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ Sci Nano 5:1002–1011

    CAS  Google Scholar 

  102. Rozmyslowska-Wojciechowska A, Karwowska E, Pozniak S, Wojciechowski T et al (2019) Influence of modification of Ti3C2 MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plants. RSC Adv 9:4092–4105

    CAS  Google Scholar 

  103. Chng ELK, Sofer Z, Pumera M (2014) MoS2 exhibits stronger toxicity with increased exfoliation. Nanoscale 6:14412–14418

    CAS  Google Scholar 

  104. Latiff NM, Teo WZ, Sofer Z, Fisher AC, Pumera M (2015) The cytotoxicity of layered black phosphorus. Chem Eur J 21:13991–13995

    CAS  Google Scholar 

  105. Shah P, Narayanan TN, Li CZ, Alwarappan S (2015) Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology 26:315102

    Google Scholar 

  106. Qu G, Liu W, Zhao Y et al (2017) Improved biocompatibility of black phosphorus nanosheets by chemical modification. Angew Chem 56:14488–14493

    CAS  Google Scholar 

  107. Zhang X, Zhang Z, Zhang S et al (2017) Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small 13:1701210

    Google Scholar 

  108. Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL (2008) Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C 112:20114–20117

    CAS  Google Scholar 

  109. Lu XY, Huang Y, Yu YD, Yang YM (2013) Application of genomics/proteomics technologies in the research of biocompatibility of biomaterials. J Inorg Mater 28:21–28

    CAS  Google Scholar 

  110. Caballero Díaz E, Cases M (2016) Analytical methodologies for nanotoxicity assessment. TrAC Trends Anal Chem 84:160–171

    Google Scholar 

  111. Frohlich E (2017) Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnol 15:84

    Google Scholar 

  112. Klaine SJ, Alvarez PJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFC1600604), National Natural Science Foundation of China (No. 21776136), Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTE1848, XTC1810), Nature Science Foundation of Jiangsu Province (NO. BK20170988), Program for Innovative Research Team in Universities of Jiangsu Province (2015), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions PPZY2015B155, TAPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Li, J., Zhang, L. et al. Post-graphene 2D materials-based antimicrobial agents: focus on fabrication strategies and biosafety assessments. J Mater Sci 55, 7226–7246 (2020). https://doi.org/10.1007/s10853-020-04507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04507-8

Navigation