Skip to main content
Log in

Interfacial Microstructural Evolution and Metallurgical Bonding Mechanisms for IN718 Superalloy Joint Produced by Hot Compressive Bonding

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 18 July 2018

This article has been updated

Abstract

The novel metallurgical joining process for bonding IN718 superalloy was investigated by hot compressive bonding (HCB) process under the deformation temperature range of 1000 °C to 1150 °C and true strains ranging from 0 to 0.5 at a strain rate of 0.001 s−1. The effect of HCB process parameters on the tensile strength was analyzed. Both the as-deformed and the interfacial microstructures were characterized using the optical microscope, electron backscattered diffraction and transmission electron microscope (TEM) analysis. The results of tensile property revealed that the degree of metallurgical bonding is promoted by increasing deformation temperature and strain. The evolution of the interfacial microstructure showed that the migration of interfacial grain boundary (IGB), which is characterized by discontinuous dynamic recrystallization, is the dominant metallurgical bonding mechanism in the early stages of bonding. TEM analysis indicated that the dislocation density is distributed heterogeneously over both sides of IGB, which is the significant reason for the migration of IGB, during the initial stage of HCB process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 18 July 2018

    First Online: 21 June 2018

    The authors would like to acknowledge the financial support given by the National Key Research and Development Program (Grant Number 2016YFB0300401), National Natural Science Foundation of China (Grant Number U1508215), Key Program of the Chinese Academy of Sciences (Grant Number ZDRW-CN-2017-1), and the National Natural Science Foundation of China (Grant Number 51774265). The authors would also like to thank Bijun Xie and Yifeng Guo for their help in the experimental work.

References

  1. D. Furrer and H. Fecht: JOM., 1999, vol. 51, pp. 14-17.

    Article  CAS  Google Scholar 

  2. D Locq, P Caron (2011) J. Aerosp. Lab 3:1.

    Google Scholar 

  3. A Mugarra, K Ostolaza, JL Alcaraz (2002) J. Mater. Process. Technol. 125–126:549-554.

    Article  Google Scholar 

  4. R. E. Schafrik, D. D. Ward and J. R. Groh: Superalloys, 2001, vol. 1, pp.1-11.

    Google Scholar 

  5. K. D. Ramkumar, B. M. Kumar, M. G. Krishnan, S. Dev, A. J. Bhalodi, N. Arivazhagan and S. Narayanan: Mater. Sci. Eng. A, 2015, vol. 639, pp. 234-244.

    Article  CAS  Google Scholar 

  6. S. K. Sharma, P. Agarwal and J. D. Majumdar: Procedia Manufacturing, 2016, vol. 7, pp. 654-659.

    Article  Google Scholar 

  7. W. B. Han, K. F. Zhang, B. Wang, and D.Z. Wu: Acta Metall. Sin.-Engl., 2007, vol. 20, pp. 307-312.

    Article  CAS  Google Scholar 

  8. A. A. Shirzadi and E. R. Wallach: Sci. Tech. Welding Joining, 2013, vol. 9, pp. 37-40.

    Article  Google Scholar 

  9. G. Zhang, R. S. Chandel and H. P. Seow: Sci. Tech. Welding Joining, 2001, vol. 6, pp. 235-239.

    Article  CAS  Google Scholar 

  10. T. J. Ma, X. Chen, W. Y. Li, X. W. Yang, Y. Zhang and S. Q. Yang: Mater. Design, 2016, vol. 89, pp. 85-93.

    Article  CAS  Google Scholar 

  11. R. Damodaram, S. G. S. Raman, D. V. V. Satyanarayana, G. M. Reddy and K. P. Rao: Mater. Sci. Eng. A, 2014, vol. 612, pp. 414-422.

    Article  CAS  Google Scholar 

  12. I. Woo, K. Nishimoto, K. Tanaka and M. Shirai: Welding International, 2000, vol. 14, pp. 365-374.

    Article  Google Scholar 

  13. H. Kuroki: Welding International, 1999, vol. 13, pp. 945-951.

    Article  Google Scholar 

  14. I. Sah, D. Kim, H. J. Lee and C. Jang: Mater. Design, 2013, vol. 47, pp. 581-589.

    Article  CAS  Google Scholar 

  15. X. Gao, Z. Jiang, D. Wei, S. Jiao, D. Chen, J. Xu, X. Zhang, D. Gong: Mater. Design, 2014, vol. 63, pp. 650-657.

    Article  CAS  Google Scholar 

  16. C. Sun, L. Li, M. Fu, Q. Zhou: Mater. Design, 2016, vol. 94, pp. 433-443.

    Article  Google Scholar 

  17. X. Yang, W. Li, Y. Feng, S. Yu, B. Xiao: Mater. Design, 2016, vol. 104, pp. 436-452.

    Article  CAS  Google Scholar 

  18. X. P. Wei, W. J. Zheng, Z. G. Song, T. Lei, Q. L. Yong and Q. C. Xie: J. Wuhan Univ. Technol., 2014, vol. 29, pp. 379-383.

    Article  CAS  Google Scholar 

  19. T. Sakai: J Mater. Process. Technol., 1995, vol. 53, pp. 349-361.

    Article  Google Scholar 

  20. D. Ponge, G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.

    Article  CAS  Google Scholar 

  21. I. L. Dillamore, H. Katoh: Metal Science, 1974, vol. 8, pp. 73-83.

    Article  CAS  Google Scholar 

  22. C. Zhang, H. Li and M. Q. Li: Sci. Technol. Welding Joining, 2015, vol. 20, pp. 115-122.

    Article  CAS  Google Scholar 

  23. B. Alemán, L. Gutiérrez and J. J. Urcola: J. Mater. Sci. Technol. 2013, vol. 9, pp. 633-641.

    Article  Google Scholar 

  24. Y. Zhou, W. F. Gale and T. H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181-196.

    Article  CAS  Google Scholar 

  25. H. J. McQueen: Mater. Sci. Eng. A, 2004, vol. 387, pp. 203-208.

    Article  Google Scholar 

  26. S. M. F. Varzaneh, A. Z. Hanzaki, J. M. Cabrera and P. R. Calvillo: Mater. Chem. Phys., 2015, vol. 149, pp. 339-343.

    Article  Google Scholar 

  27. Z. Yanushkevich, A. Belyakov and R. Kaibyshev: Acta Mater., 2015, vol. 82, pp. 244-254.

    Article  CAS  Google Scholar 

  28. M. G. Jiang, H. Yan and R. S. Chen: J. Alloy. Compd., 2015, vol. 650, pp. 399-409.

    Article  CAS  Google Scholar 

  29. T. Sakai, H. Miura, A. Goloborodko and O. Sitdikov: Acta Mater., 2009, vol. 57, pp. 153-162.

    Article  CAS  Google Scholar 

  30. H. S. Lee, J. H. Yoon and W. H. Cho: Advanced Materials Research, 2011, vol. 228-229, pp. 666-671.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bijun Xie and Yifeng Guo for their help in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yue Sun.

Additional information

Manuscript submitted August 31, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.Y., Sun, M.Y., Xu, B. et al. Interfacial Microstructural Evolution and Metallurgical Bonding Mechanisms for IN718 Superalloy Joint Produced by Hot Compressive Bonding. Metall Mater Trans B 49, 2152–2162 (2018). https://doi.org/10.1007/s11663-018-1313-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1313-9

Keywords

Navigation