Skip to main content
Log in

Drug carrier for sustained release of withaferin A for pancreatic cancer treatment

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemotherapeutic drugs have shown some limitations in anti-tumor treatment, such as drug resistance, high toxicity and limited regime of clinical uses. Natural products have attracted extensive attention as potential source of unmodified chemical compounds for disease treatment. Withaferin A (WA) has the potential to inhibit multiple human tumors, but it is hardly available for oral administration due to its low water solubility and its side effects. We developed a methoxy poly(ethylene glycol) (mPEG) conjugated poly(d,l-lactide-co-glycolide) (PLGA) drug carrier particles to encapsulate WA for pancreatic cancer treatment. The results showed that WA does not lose its physicochemical properties after encapsulation, and our drug carriers are completely degraded within 1 month. We used the WA-loaded mPEG–PLGA particles for pancreatic cancer cell treatment where it exhibited stronger inhibition than free drug (WA) at the early treatment stage. Our formulation of the drug carriers provides an efficient encapsulation of WA that allows it bonding with heat shock proteins, thereby reducing the expression of AKT and CDK4 proteins to induce apoptosis in cancer cells. Together, our data demonstrate that mPEG–PLGA loaded with WA can achieve the design goals for cancer therapy given its advantages of sustained release and degradation property to reduce the side effect of WA, which provides a possibility for WA to be used in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kumar M, Liu ZR, Thapa L, Wang DY, Tian R, Qin RY (2004) Mechanisms of inhibition of growth of human pancreatic carcinoma implanted in nude mice by somatostatin receptor subtype 2. Pancreas 29(2):141–151

    CAS  Google Scholar 

  2. Michl P, Gress TM (2013) Current concepts and novel targets in advanced pancreatic cancer. Gut 62(2):317–326

    CAS  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62(1):10–29

    Google Scholar 

  4. Nd MW (2006) Ancient medicine, modern use: withania somnifera and its potential role in integrative oncology. Altern Med Rev 11:269–278

    Google Scholar 

  5. Kumar M, Liu ZR, Thapa L, Qin RY (2004) Anti-angiogenic effects of somatostatin receptor subtype 2 on human pancreatic cancer xenografts. Carcinogenesis 25(11):2075–2081

    CAS  Google Scholar 

  6. Okamoto S, Tsujioka T, Suemori S, Kida J, Kondo T, Tohyama Y, Tohyama K (2016) Withaferin A suppresses the growth of myelodysplasia and leukemia cell lines by inhibiting cell cycle progression. Cancer Sci 107(9):1302–1314

    CAS  Google Scholar 

  7. Wang Z, Dabrosin C, Yin X et al (2015) Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 35(Suppl):S224–S243

    Google Scholar 

  8. Debernardi S, Massat NJ, Radon TP, Sangaralingam A, Banissi A, Ennis DP, Dowe T, Chelala C et al (2015) Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. Am J Cancer Res 5(11):3455–3466

    CAS  Google Scholar 

  9. Li X, Zhu F, Jiang JX, Sun CY, Wang X, Shen M, Tian R, Shi CJ et al (2015) Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3 K/AKT pathway in human pancreatic cancer cells. Cancer Lett 357(1):219–230

    CAS  Google Scholar 

  10. Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M, Ishiwata T (2011) Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther 11(5):512–523

    CAS  Google Scholar 

  11. Aqil F, Jeyabalan J, Kausar H, Bansal SS, Sharma RJ, Singh IP, Vadhanam MV, Gupta RC (2012) Multi-layer polymeric implants for sustained release of chemopreventives. Cancer Lett 326(1):33–40

    CAS  Google Scholar 

  12. Han YC, Li SP, Cao XY, Yuan L, Wang YF, Yin YX, Qiu T, Dai HL, Wang XY (2014) Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci Rep 4:7134

    CAS  Google Scholar 

  13. Wang H, Zhao Y, Wu Y, Hu YL, Nan KH, Nie GJ, Chen H (2011) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG–PLGA copolymer nanoparticles. Biomaterials 32(32):8281–8290

    CAS  Google Scholar 

  14. Bhatnagar P, Kumari M, Pahuja R, Pant AB, Shukla Y, Kumar P, Gupta KC (2018) Hyaluronic acid-grafted PLGA nanoparticles for the sustained delivery of berberine chloride for an efficient suppression of Ehrlich ascites tumors. Drug Deliv Transl Res 8(3):565–579

    CAS  Google Scholar 

  15. Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomed Nanotechnol Biol Med 5(4):410–418

    CAS  Google Scholar 

  16. Shen M, Xu YY, Sun Y, Han BS, Duan YR (2015) Preparation of a thermosensitive gel composed of a mPEG–PLGA–PLL–cRGD nanodrug delivery system for pancreatic tumor therapy. ACS Appl Mater Interfaces 7(37):20530–20537

    CAS  Google Scholar 

  17. Cu Y, Saltzman WM (2009) Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm 6(1):173–181

    CAS  Google Scholar 

  18. Danhier F, Lecouturier N, Vroman B, Jerome C, Marchand-Brynaert J, Feron O, Preat V (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133(1):11–17

    CAS  Google Scholar 

  19. Zhang KR, Tang X, Zhang J, Lu W, Lin X, Zhang Y, Tian B, Yang H et al (2014) PEG–PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release 183:77–86

    CAS  Google Scholar 

  20. Li J, Jiang GQ, Ding FX (2008) The effect of pH on the polymer degradation and drug release from PLGA–mPEG microparticles. J Appl Polym Sci 109(1):475–482

    CAS  Google Scholar 

  21. Guo Y, He W, Yang S, Zhao D, Li Z, Luan Y (2017) Co-delivery of docetaxel and verapamil by reduction-sensitive PEG–PLGA–SS–DTX conjugate micelles to reverse the multi-drug resistance of breast cancer. Colloids Surf B Biointerfaces 151:119–127

    CAS  Google Scholar 

  22. Liu P, Yu H, Sun Y, Zhu M, Duan Y (2012) A mPEG–PLGA–b-PLL copolymer carrier for adriamycin and siRNA delivery. Biomaterials 33(17):4403–4412

    CAS  Google Scholar 

  23. Qureshi WA, Zhao RF, Wang H, Ji TJ, Ding YP, Ihsan A, Mujeeb A, Nie GJ et al (2016) Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity. Sci Bull 61(21):1689–1698

    CAS  Google Scholar 

  24. Wang L, Hu Y, Hao Y, Li L, Zheng C, Zhao H et al (2018) Tumor-targeting core-shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy. J Control Release 286:74–84

    CAS  Google Scholar 

  25. Zhang X, Wang Q, Qin L, Fu H, Fang Y, Han B, Duan Y (2016) EGF-modified mPEG–PLGA–PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment strategy for lung cancer. Drug Deliv 23(8):2936–2945

    CAS  Google Scholar 

  26. Mosquera J, Garcia I, Liz-Marzan LM (2018) Cellular uptake of nanoparticles versus small molecules: a matter of size. Accounts Chem Res 51(9):2305–2313

    CAS  Google Scholar 

  27. Zhou YQ, Peng ZL, Seven ES, Leblanc RM (2018) Crossing the blood-brain barrier with nanoparticles. J Control Release 270:290–303

    CAS  Google Scholar 

  28. He Z, Sun Y, Cao J, Duan Y (2016) Degradation behavior and biosafety studies of the mPEG–PLGA–PLL copolymer. Phys Chem Chem Phys 18(17):11986–11999

    CAS  Google Scholar 

  29. Teng Y, Bai M, Sun Y, Wang Q, Li F, Duan Y et al (2015) Enhanced delivery of PEAL nanoparticles with ultrasound targeted microbubble destruction mediated siRNA transfection in human MCF-7/S and MCF-7/ADR cells in vitro. Int J Nanomed 10:5447–5457

    CAS  Google Scholar 

  30. Hanson JA, Chang CB, Graves SM, Li Z, Mason TG, Deming TJ (2008) Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455(7209):85–88

    CAS  Google Scholar 

  31. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298(5595):1006–1009

    CAS  Google Scholar 

  32. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, Topp EM (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105(2):417–430

    CAS  Google Scholar 

  33. Nunes C, Suryanarayanan R, Botez CE, Stephens PW (2004) Characterization and crystal structure of d-mannitol hemihydrate. J Pharm Sci 93(11):2800–2809

    CAS  Google Scholar 

  34. Garidel P, Pevestorf B, Bahrenburg S (2015) Stability of buffer-free freeze-dried formulations: a feasibility study of a monoclonal antibody at high protein concentrations. Eur J Pharm Biopharm 97:125–139

    CAS  Google Scholar 

  35. Nicoud L, Owczarz M, Arosio P, Morbidelli M (2015) A multiscale view of therapeutic protein aggregation: a colloid science perspective. Biotechnol J 10(3):367–378

    CAS  Google Scholar 

  36. Wen L, Zheng X, Wang X, Lan H, Yin Z (2017) Bilateral effects of excipients on protein stability: preferential interaction type of excipient and surface aromatic hydrophobicity of protein. Pharm Res 34(7):1378–1390

    CAS  Google Scholar 

  37. Aryal S, Prabaharan M, Pilla S, Gong S (2009) Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery. Int J Biol Macromol 44(4):346–352

    CAS  Google Scholar 

  38. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327

    CAS  Google Scholar 

  39. Gu M, Yu Y, Gunaherath G, Gunatilaka A, Li D, Sun D (2014) Structure–activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Invest New Drugs 32(1):68–74

    CAS  Google Scholar 

  40. Liu X, Qi W, Cooke LS, Kithsiri Wijeratne EM, Xu Y, Marron MT, Leslie Gunatilaka AA, Mahadevan D (2011) An analog of withaferin A activates the MAPK and glutathione “stress” pathways and inhibits pancreatic cancer cell proliferation. Cancer Invest 29(10):668–675

    CAS  Google Scholar 

  41. Yoneyama T, Arai MA, Sadhu SK, Ahmed F, Ishibashi M (2015) Hedgehog inhibitors from Withania somnifera. Bioorg Med Chem Lett 25(17):3541–3544

    CAS  Google Scholar 

  42. Bauer TW, Liu W, Fan F, Camp ER, Yang A, Somcio RJ et al (2005) Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res 65(17):7775–7781

    CAS  Google Scholar 

  43. Bi Y, Min M, Shen W, Liu Y (2016) Numb/Notch signaling pathway modulation enhances human pancreatic cancer cell radiosensitivity. Tumour Biol 37(11):15145–15155

    CAS  Google Scholar 

  44. Gu WJ, Liu HL (2013) Induction of pancreatic cancer cell apoptosis, invasion, migration, and enhancement of chemotherapy sensitivity of gemcitabine, 5-FU, and oxaliplatin by hnRNP A2/B1 siRNA. Anticancer Drugs 24(6):566–576

    CAS  Google Scholar 

  45. Kikuta K, Masamune A, Watanabe T, Ariga H, Itoh H, Hamada S et al (2010) Pancreatic stellate cells promote epithelial–mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun 403(3–4):380–384

    CAS  Google Scholar 

  46. Sun XD, Liu XE, Huang DS (2013) Curcumin reverses the epithelial–mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncol Rep 29(6):2401–2407

    CAS  Google Scholar 

  47. Xu WT, Bian ZY, Fan QM, Li G, Tang TT (2009) Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett 281(1):32–41

    CAS  Google Scholar 

  48. Yin Y, Lin Q, Sun H, Chen D, Wu Q, Chen X, Li S (2012) Cytotoxic effects of ZnO hierarchical architectures on RSC96 Schwann cells. Nanoscale Res Lett 7:439

    Google Scholar 

  49. Sun HL, Dai XW, Han B (2014) TRIM29 as a novel biomarker in pancreatic adenocarcinoma. Dis Markers. https://doi.org/10.1155/2014/317817

    Article  Google Scholar 

  50. Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B et al (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79(4):542–551

    CAS  Google Scholar 

  51. Xia Y, Rocchi P, Iovanna JL, Peng L (2012) Targeting heat shock response pathways to treat pancreatic cancer. Drug Discov Today 17(1–2):35–43

    CAS  Google Scholar 

  52. Xia S, Miao Y, Liu S (2018) Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Biochem Biophys Res Commun 503(4):2363–2369

    CAS  Google Scholar 

  53. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2016YFC1101302), and the National Natural Science Foundation of China (81773160, 51572206), HUBEI Natural Science Foundation (2017CFB467) to MW, and Tongji Hospital Science Fund for Distinguished Young Scholars (2017) to MW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixia Yin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Q., Feng, Y., Wang, W. et al. Drug carrier for sustained release of withaferin A for pancreatic cancer treatment. J Mater Sci 55, 1702–1714 (2020). https://doi.org/10.1007/s10853-019-04139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04139-7

Navigation