Skip to main content
Log in

Superhydrophobicity and anti-icing of CF/PEEK composite surface with hierarchy structure

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a durable, reusable, effective and large-area molding method was proposed to fabricate hierarchical structures on the CF/PEEK composite surface. The hierarchical structures were fabricated using a combination of sandblasting and anodizing treatments on the metal surface. Subsequently, a hot-pressing process was adopted for producing structures that matched the metal templates. The rough surface was modified by (Heptadecafluoro-1,1,2,2-tetradecyl)trimethoxysilane with low surface energy to obtain superhydrophobicity. Scanning electron microscopy was utilized to observe the surface morphologies and structure. The chemical composition and roughness were analyzed by FT-IR spectroscopy and the laser microscopy, respectively. Wettability was characterized through contact angle measuring instruments, and static and dynamic sliding contact angles were obtained to be 158.23° and 8.38°, respectively. After the abrasion test, the CF/PEEK composite surface still maintained reasonable mechanical stability. Comparing with the untreated sample, CF/PEEK superhydrophobic surface exhibited excellent anti-icing performance with freezing time increasing from 54 to 514 s at − 20° and icing adhesion strength reducing to 30.5 kPa. Although the fabrication of composite surface with water repellency presented here is useful for anti-icing, it can also be applied in other applications that require superhydrophobic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Iveković A, Novak S, Lukek M, Kalin M (2015) Aqueous electrophoretic deposition of bulk polyether ether ketone (PEEK). J Mater Process Technol 223:58–64

    Article  Google Scholar 

  2. Hasan MMB, Cherif C, Foisal ABM, Onggar T, Hund RD, Nocke A (2013) Development of conductive coated Polyether ether ketone (PEEK) filament for structural health monitoring of composites. compos sci technol 88:76–83

    Article  CAS  Google Scholar 

  3. Chen M, Ouyang L, Lu T, Wang H, Meng F, Yang Y et al (2017) Enhanced bioactivity and bacteriostasis of surface fluorinated polyetheretherketon. ACS Appl Mater Interfaces 9(20):16824–16833

    Article  CAS  Google Scholar 

  4. Andersson LO, Golander CG, Persson S (1994) Ice adhesion to rubber materials. J Adhes Sci Technol 8(2):117–132

    Article  CAS  Google Scholar 

  5. Ayres J, Simendinger WH, Balik CM (2007) Characterization of titanium alkoxide sol–gel systems designed for anti-icing coatings: ii. Mass loss kinetics. J Coat Technol Res 4(4):473–481

    Article  CAS  Google Scholar 

  6. Zhu W, Liu H, Yan W, Chen T (2017) The fabrication of superhydrophobic PTFE/UHMWPE composite surface by hot-pressing and texturing process. Colloid Polym Sci 295(5):759–766

    Article  CAS  Google Scholar 

  7. Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23(6):719–734

    Article  CAS  Google Scholar 

  8. Cao Y, Huang J, Yin J (2016) Numerical simulation of three-dimensional ice accretion on an aircraft wing. Int J Heat Mass Trans 92(3):34–54

    Article  Google Scholar 

  9. Jung S, Tiwari MK, Doan NV, Poulikakos D (2012) Mechanism of supercooled droplet freezing on surfaces. Nat Commun 3:615

    Article  Google Scholar 

  10. Jin M, Shen Y, Luo X, Tao J, Xie Y, Chen H, Wu Y (2018) A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity. Appl Surf Sci 455:883–890

    Article  CAS  Google Scholar 

  11. Kulinich SA, Farzaneh M (2004) Alkylsilane self-assembled monolayers: modeling their wetting characteristics. Appl Surf Sci 230:232–240

    Article  CAS  Google Scholar 

  12. Futamata M, Gai X, Itoh H (2004) Improvement of water-repellency homogeneity by compound fluorine–carbon sprayed coating and silane treatment. Vacuum 73:519–525

    Article  CAS  Google Scholar 

  13. Marin J, Kennedy KJ, Eskicioglu C (2010) Characterization of an anaerobic baffled reactor treating dilute aircraft de-icing fluid and long term effects of operation on granular biomass. Bioresour Technol 101:2217–2223

    Article  CAS  Google Scholar 

  14. Tourkine P, Merrer ML, Quere D (2009) Delayed freezing on water repellent materials. Langmuir 25:7214–7216

    Article  CAS  Google Scholar 

  15. Alizadeh A, Yamada M, Li R, Shang W, Otta S, Zhong S, Ge L, Dhinojwala A, Conway KR, Bahadur V, Vinciquerra AJ, Stephens B, Blohm ML (2012) Dynamics of ice nucleation on water repellent surfaces. Langmuir 28:3180–3186

    Article  CAS  Google Scholar 

  16. Dotan A, Dodiuk H, Laforte C, Kenig S (2009) The relationship between water wetting and ice adhesion. J Adhes Sci Technol 23:1907–1915

    Article  CAS  Google Scholar 

  17. Watson GS, Watson JA (2004) Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl. Surf. Sci. 235(s 1–2):139–144

    Article  CAS  Google Scholar 

  18. Gao X, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432(7013):36

    Article  CAS  Google Scholar 

  19. He Y, Jiang C, Cao X, Chen J, Tian W, Yuan W (2014) Reducing ice adhesion by hierarchical micro-nano-pillars. Appl Surf Sci 305:589–595

    Article  CAS  Google Scholar 

  20. Weng C, Wang F, Zhou M, Yang D, Jiang B (2018) Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design. Appl Surf Sci 436:224–233

    Article  CAS  Google Scholar 

  21. Lu Y, Sathasivam S, Song J, Chen F, Xu W, Carmalt CJ, Parkin IP (2014) Creating superhydrophobic mild steel surfaces for water proofing and oil-water separation. J Mater Chem A 2:11628–11634

    Article  CAS  Google Scholar 

  22. Cully P, Karasu F, MÜLler L, Jauzein T, Leterrier Y (2018) Self-cleaning and wear-resistant polymer nanocomposite surfaces. Surf Coat Technol 348:111–120

    Article  CAS  Google Scholar 

  23. Kulinich SA, Farzaneh M (2009) Ice adhesion on super-hydrophobic surfaces. Appl Surf Sci 255:8153–8157

    Article  CAS  Google Scholar 

  24. Xue C, Li Y, Zhang P, Ma J, Jia S (2014) Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Appl Mater Interfaces 6(13):10153–10161

    Article  CAS  Google Scholar 

  25. Yu M, Gu G, Meng W, Qing F (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253(7):3669–3673

    Article  CAS  Google Scholar 

  26. Wang H, Hu Z, Zhu Y, Yang S, Kai J, Zhu Y (2017) Toward easily enlarged superhydrophobic materials with stain-resistant, oil-water separation and anti-corrosion function by a water-based one-step electrodeposition method. Ind Eng Chem Res 56(4):933–941

    Article  CAS  Google Scholar 

  27. Zhu T, Cai C, Duan C, Zhai S, Xu J (2015) Robust polypropylene fabrics super-repelling various liquids: a simple, rapid and scalable fabrication method by solvent swelling. ACS Appl Mater Interfaces 7(25):13996–14003

    Article  CAS  Google Scholar 

  28. Nakajima A, Abe K, Hashimoto K, Watanabe T (2000) Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 376(1–2):140–143

    Article  CAS  Google Scholar 

  29. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D et al (2005) Artificial lotus leaf by nanocasting. Langmuir 21(19):8978–8981

    Article  CAS  Google Scholar 

  30. Sheng J, Zhang M, Xu Y, Yu J, Ding B (2016) Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane. ACS Appl Mater Interfaces 8(40):27218–27226

    Article  CAS  Google Scholar 

  31. Zhan Y, Ruan M, Li W, Li H, Hu LY, Ma F, Yu Z, Feng W (2017) Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior. Colloid Surf A-Physicochem Eng Asp 535:8–15

    Article  CAS  Google Scholar 

  32. Yu D, Zhao Y, Li H, Qi H, Yuan X (2013) Preparation and evaluation of hydrophobic surfaces of polyacrylate-polydimethylsiloxane copolymers for anti-icing. Prog Org Coat 76(10):1435–1444

    Article  CAS  Google Scholar 

  33. Liu J, Wang J, Mazzola L, Memon H, Barman T et al (2018) Development and evaluation of poly(dimethylsiloxane) based composite coatings for icephobic applications. Surf Coat Technol 349:980–985

    Article  CAS  Google Scholar 

  34. Yang C, Fang Y, Zhao K, Li C, Yang X, Zhou H et al (2015) Preparation principle of super-hydrophobic surfaces by phase separation. J Macromol Sci Part B 54(8):20

    Article  Google Scholar 

  35. Li H, Li X, Luo C, Zhao Y, Yuan X (2014) Icephobicity of polydimethylsiloxane-b-poly(fluorinated acrylate). Thin Solid Films 573:67–73

    Article  CAS  Google Scholar 

  36. Wang N, Tang L, Tong W, Xiong D (2018) Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing properties. Mater Des 156:320–328

    Article  Google Scholar 

  37. Zhang Q, Jin B, Wang B, Fu Y, Zhan X, Chen F (2017) Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties. Ind Eng Chem Res 56(10):2754–2763

    Article  CAS  Google Scholar 

  38. Pan L, Hu J, Lv Y, Ma W, Ding W, Wang Y et al (2018) Modification of Ti–6Al–4V plates with schiff base complex and adhesive performance of Ti–6Al–4V/PEEK. Mater Des 144:271–280

    Article  CAS  Google Scholar 

  39. Shen Y, Tao J, Tao H, Chen S, Pan L, Wang T (2015) Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Langmuir 31:10799–10806

    Article  CAS  Google Scholar 

  40. Alizadeh A, Yamada M, Li R, Shang W, Otta S, Zhong S et al (2012) Dynamics of ice nucleation on water repellent surfaces. Langmuir 28(6):3180–3186

    Article  CAS  Google Scholar 

  41. Hao P, Lv C, Zhang X (2014) Freezing of sessile water droplets on surfaces with various roughness and wettability. Appl Phys Lett 104(16):161609

    Article  Google Scholar 

  42. Zobrist B, Koop T, Luo BP, Marcolli C, Peter T (2007) Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J Phys Chem C 111:2149–2155

    Article  CAS  Google Scholar 

  43. Hejazi V, Sobolev K, Nosonovsky M (2013) From superhydrophobicity to icephobicity: forces and interaction analysis Scientific reports-UK 2194 (2013)

  44. Sarkar DK, Farzaneh M (2009) Superhydrophobic coatings with reduced ice adhesion. J Adhes Sci Technol 23:1215–1237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu-UK Industrial Challenge Programme (No. BZ2017063) and National Key Research and Development Program (No. 2017YFB0703301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Wang, F., Pang, X. et al. Superhydrophobicity and anti-icing of CF/PEEK composite surface with hierarchy structure. J Mater Sci 54, 14728–14741 (2019). https://doi.org/10.1007/s10853-019-03956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03956-0

Navigation