Skip to main content
Log in

The effect of sulfur and nitrogen/sulfur co-doping in graphene surface on the adsorption of toxic heavy metals (Cd, Hg, Pb)

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The adsorption of toxic heavy metals (THMs), including cadmium (Cd), mercury (Hg), and lead (Pb), on the graphene (G) and six sulfur- and nitrogen/sulfur-co-doped graphene surfaces (G@1N@1S, G@1N@2S, G@2N@1S, G@1S, G@2S, G@3S) has been studied using electronic structure methods. The doping of graphene surface with the nitrogen and sulfur atoms increases the adsorption energies of THMs. The strongest interaction is seen with adsorption of Pb atom on the surfaces, following the order Pb > Cd > Hg and is confirmed by the atoms in molecules analysis, noncovalent interaction plots, and frontier molecular orbitals. The free energy of adsorption calculation shows that the adsorption process of Pb atoms on the surfaces is exothermic and proceeds spontaneously, while the nature of adsorption of Cd and Hg atoms is endothermic. Significant changes in the electronic structure of the surfaces are seen with adsorption of THMs. A significant change in the HOMO–LUMO energy gap (Eg) and electrical conductivity (σ) of the surfaces is observed with adsorption of Pb atoms, in contrast to Cd and Hg atoms counterparts. Moreover, the calculated optical properties of the surfaces and their complexes with THMs using time-dependent density functional theory reveal that the absorption spectra of the surfaces undergo appreciable changes after adsorption of THMs. These studies indicate the potential use of defect engineering and decoration of vacant sites by chalcogens/pnictogens for sensing of toxic heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Harrison J (1984) Disposal of radioactive wastes. Science 226:11–14. https://doi.org/10.1126/science.226.4670.11

    Article  Google Scholar 

  2. McNutt M (2013) Mercury and health. Science 341:1430–1431. https://doi.org/10.1126/science.1245924

    Article  Google Scholar 

  3. Bings NH, Bogaerts A, Broekaert JA (2006) Atomic spectroscopy. Anal Chem 78:3917–3946. https://doi.org/10.1021/AC060597M

    Article  Google Scholar 

  4. Tan LV, Hieu TQ, Cuong NV (2015) Spectrophotometric determination of Cr(III) and Pb(II) using their complexes with 5,11,17,23-Tetra[(2-ethyl acetoethoxyphenyl)(azo)phenyl]calix[4]arene. J Anal Methods Chem 2015:1–7. https://doi.org/10.1155/2015/860649

    Article  Google Scholar 

  5. Kunkel R, Manahan SE (1973) Atomic absorption analysis of strong heavy metal chelating agents in water and waste water. Anal Chem 45:1465–1468. https://doi.org/10.1021/ac60330a024

    Article  Google Scholar 

  6. Lopez-Artiguez M, Cameán A, Repetto M (1993) Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry. J Anal Toxicol 17:18–22. https://doi.org/10.1093/jat/17.1.18

    Article  Google Scholar 

  7. Jamali MR, Assadi Y, Shemirani F et al (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579:68–73. https://doi.org/10.1016/j.aca.2006.07.006

    Article  Google Scholar 

  8. Zhang S, Zhang X, Xiong Y, Wang G, Zheng N (2015) Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics. Waste Manag Res 33:183–190. https://doi.org/10.1177/0734242X14563376

    Article  Google Scholar 

  9. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243. https://doi.org/10.1016/S0304-3894(02)00263-7

    Article  Google Scholar 

  10. El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148:216–228. https://doi.org/10.1016/j.jhazmat.2007.01.146

    Article  Google Scholar 

  11. Johari K, Alias AS, Saman N, Song ST, Mat H (2015) Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonisation and activation of coconut husk. Waste Manag Res 33:81–88. https://doi.org/10.1177/0734242X14562660

    Article  Google Scholar 

  12. Kim K-W, Lee H-m, Kim BS et al (2015) Preparation and thermal properties of polyethylene-based carbonized fibers. Carbon Lett 16:62–66. https://doi.org/10.5714/CL.2015.16.1.062

    Article  Google Scholar 

  13. Apiratikul R, Pavasant P (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99:2766–2777. https://doi.org/10.1016/j.biortech.2007.06.036

    Article  Google Scholar 

  14. Shtepliuk I, Eriksson J, Khranovskyy V, Iakimov T, Spetz AL, Yakimova R (2016) Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals. Beilstein J Nanotechnol 7:1800–1814. https://doi.org/10.3762/bjnano.7.173

    Article  Google Scholar 

  15. Bazrafshan E, Mohammadi L, Ansari-Moghaddam A, Mahvi AH (2015) Heavy metals removal from aqueous environments by electrocoagulation process—a systematic review. J Environ Health Sci Eng 13:74–89. https://doi.org/10.1186/s40201-015-0233-8

    Article  Google Scholar 

  16. Saidur M, Aziz AA, Basirun W (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139. https://doi.org/10.1016/j.bios.2016.11.039

    Article  Google Scholar 

  17. Agnoli S, Favaro M (2016) Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J Mater Chem A 4:5002–5025. https://doi.org/10.1039/c5ta10599d

    Article  Google Scholar 

  18. Shtepliuk I, Khranovskyy V, Yakimova R (2016) Combining graphene with silicon carbide: synthesis and properties—a review. Semicond Sci Technol 31:113004–113032. https://doi.org/10.1088/0268-1242/31/11/113004

    Article  Google Scholar 

  19. Shtepliuk I, Iakimov T, Khranovskyy V, Eriksson J, Giannazzo F, Yakimova R (2017) Role of the potential barrier in the electrical performance of the graphene/SiC interface. Crystals 7:162–179. https://doi.org/10.3390/cryst7060162

    Article  Google Scholar 

  20. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60. https://doi.org/10.1016/j.pmatsci.2014.10.004

    Article  Google Scholar 

  21. Chang J, Zhou G, Christensen ER, Heideman R, Chen J (2014) Graphene-based sensors for detection of heavy metals in water: a review. Anal Bioanal Chem 406:3957–3975. https://doi.org/10.1007/s00216-014-7804-x

    Article  Google Scholar 

  22. Zhang L, Peng D, Liang R-P, Qiu J-D (2018) Graphene-based optical nanosensors for detection of heavy metal ions. TrAC Trends Anal Chem 102:280–289. https://doi.org/10.1016/j.trac.2018.02.010

    Article  Google Scholar 

  23. Chen K, Lu G, Chang J et al (2012) Hg (II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal Chem 84:4057–4062. https://doi.org/10.1021/ac3000336

    Article  Google Scholar 

  24. Ting SL, Ee SJ, Ananthanarayanan A, Leong KC, Chen P (2015) Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim Acta 172:7–11. https://doi.org/10.1016/j.electacta.2015.01.026

    Article  Google Scholar 

  25. Wang D, Noël V, Piro B (2016) Electrolytic gated organic field-effect transistors for application in biosensors—a Review. Electronics 5:9–32. https://doi.org/10.3390/electronics5010009

    Article  Google Scholar 

  26. Rowley-Neale SJ, Randviir EP, Dena ASA, Banks CE (2018) An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl Mater Today 10:218–226. https://doi.org/10.1016/j.apmt.2017.11.010

    Article  Google Scholar 

  27. YangáTeoh W (2014) Graphene oxide-based electrochemical sensor: a platform for ultrasensitive detection of heavy metal ions. RSC Adv 4:24653–24657. https://doi.org/10.1039/c4ra02247e

    Article  Google Scholar 

  28. Zhou G, Chang J, Cui S, Pu H, Wen Z, Chen J (2014) Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl Mater Interfaces 6:19235–19241. https://doi.org/10.1021/am505275a

    Article  Google Scholar 

  29. Li M, Gou H, Al-Ogaidi I, Wu N (2013) Nanostructured sensors for detection of heavy metals: a review. ACS Sustain Chem Eng 1:713–723. https://doi.org/10.1021/sc400019a

    Article  Google Scholar 

  30. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036. https://doi.org/10.1002/elan.200900571

    Article  Google Scholar 

  31. Wanekaya AK (2011) Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 136:4383–4391. https://doi.org/10.1039/c1an15574a

    Article  Google Scholar 

  32. Bui M-PN, Li CA, Han KN, Pham X-H, Seong GH (2012) Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes. Anal Sci 28:699–704. https://doi.org/10.2116/analsci.28.699

    Article  Google Scholar 

  33. Wang D-W, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752. https://doi.org/10.1021/nn900297m

    Article  Google Scholar 

  34. Shtepliuk I, Caffrey NM, Iakimov T, Khranovskyy V, Abrikosov IA, Yakimova R (2017) On the interaction of toxic heavy metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene. Sci Rep 7:3934–3950. https://doi.org/10.1038/s41598-017-04339-8

    Article  Google Scholar 

  35. Liu Z, Zhang Y, Wang B, Cheng H, Cheng X, Huang Z (2018) DFT study on Al-doped defective graphene towards adsorption of elemental mercury. Appl Surf Sci 427:547–553. https://doi.org/10.1016/j.apsusc.2017.07.293

    Article  Google Scholar 

  36. Shtepliuk I, Yakimova R (2018) Interband transitions in closed-shell vacancy containing graphene quantum dots complexed with heavy metals. Phys Chem Chem Phys 20:21528–21543. https://doi.org/10.1039/C8CP03306D

    Article  Google Scholar 

  37. Yadav R, Dixit C (2017) Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review. J Sci Adv Mater Devices 2:141–149. https://doi.org/10.1016/j.jsamd.2017.05.007

    Article  Google Scholar 

  38. Banhart F, Kotakoski J, Krasheninnikov AV (2010) Structural defects in graphene. ACS Nano 5:26–41. https://doi.org/10.1021/nn102598m

    Article  Google Scholar 

  39. Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem Sci 2011:1–15. https://doi.org/10.4061/2011/343125

    Article  Google Scholar 

  40. Sahoo S, Khanna SN, Entel P (2015) Controlling the magnetic anisotropy of Ni cluster supported on graphene flakes with topological defects. Appl Phys Lett 107:043102–043106. https://doi.org/10.1063/1.4927480

    Article  Google Scholar 

  41. Berkelbach TC, Hybertsen MS, Reichman DR (2014) Microscopic theory of singlet exciton fission. III. Crystalline pentacene. J Chem Phys 141:074705–074806. https://doi.org/10.1063/1.4892793

    Article  Google Scholar 

  42. Gao X, Zhou Y, Tan Y, Cheng Z, Tang Q, Jia J, Shen Z (2018) Unveiling adsorption mechanisms of elemental mercury on defective boron nitride monolayer: a computational study. Energy Fuels 32:5331–5337. https://doi.org/10.1021/acs.energyfuels.8b00062

    Article  Google Scholar 

  43. Gopalsamy K, Balamurugan J, Thanh TD, Kim NH, Lee JH (2017) Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors. Chem Eng J 312:180–190. https://doi.org/10.1016/j.cej.2016.11.130

    Article  Google Scholar 

  44. Wang T, Wang L-X, Wu D-L, Xia W, Jia D-Z (2015) Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Sci Rep 5:9591–9599. https://doi.org/10.1038/srep09591

    Article  Google Scholar 

  45. Zhang D, Zheng L, Ma Y et al (2014) Synthesis of nitrogen-and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl Mater Interfaces 6:2657–2665. https://doi.org/10.1021/am405128j

    Article  Google Scholar 

  46. Chen L, Li X, Ma C, Wang M, Zhou J (2017) Interaction and quantum capacitance of nitrogen/sulfur co-doped graphene: a theoretical calculation. J Phys Chem C 121:18344–18350. https://doi.org/10.1021/acs.jpcc.7b04551

    Article  Google Scholar 

  47. Frisch M, Trucks G, Schlegel H, et al. Gaussian 09, Revision D. 01; Gaussian: Wallingford, CT, 2009

  48. Boys SF, Bernardi Fd (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  Google Scholar 

  49. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138. https://doi.org/10.1007/BF00549096

    Article  Google Scholar 

  50. Bader RFW (1994) Atoms in molecules. Oxford University Press, Oxford

    Google Scholar 

  51. Biegler-König F, Schönbohm J AIM2000, version 2.0, 2002

  52. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  Google Scholar 

  53. Saadat K, Tavakol H (2016) Study of noncovalent interactions of end-caped sulfur-doped carbon nanotubes using DFT, QTAIM, NBO and NCI calculations. Struct Chem 27:739–751. https://doi.org/10.1007/s11224-015-0616-6

    Article  Google Scholar 

  54. Roohi H, Jahantab M (2017) Sensitivity of perfect and stone-Wales defective BNNTs toward NO molecule: a DFT/M06-2X approach. Phys Chem Res 5:167–183. https://doi.org/10.22036/pcr.2017.39484

    Google Scholar 

  55. Shakourian-Fard M, Jamshidi Z, Bayat A, Kamath G (2015) Meta-hybrid density functional theory study of adsorption of imidazolium-and ammonium-based ionic liquids on graphene sheet. J Phys Chem C 119:7095–7108. https://doi.org/10.1021/jp512020q

    Article  Google Scholar 

  56. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Research Council of Jahrom University and Birjand University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Reza Ghenaatian or Mehdi Shakourian-Fard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2019_3791_MOESM1_ESM.docx

This material contains the optimized geometries of G@3C and G@4C surfaces and their complexes with THMs, the adsorption energies (Eads) for interaction of G@3C(b) and G@4C(b) surfaces with THMs, the results of AIM analysis, correlation between the sum of electron density (∑ρ(r)) and the sum of Wiberg bond indices (∑Wbi) values in the surface–THM complexes, noncovalent interaction (NCI) plots, and TD–DFT results of the surfaces and their complexes with Cd, Hg, and Pb atoms (DOCX 9285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghenaatian, H.R., Shakourian-Fard, M. & Kamath, G. The effect of sulfur and nitrogen/sulfur co-doping in graphene surface on the adsorption of toxic heavy metals (Cd, Hg, Pb). J Mater Sci 54, 13175–13189 (2019). https://doi.org/10.1007/s10853-019-03791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03791-3

Navigation