Skip to main content
Log in

Competitive effects of centrifugal force and electric field force on centrifugal electrospinning

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Due to a unique high efficiency in producing microfibers and nanofibers, centrifugal electrospinning that combines centrifugal spinning and electrospinning has attracted great interest in academic research and industrial manufacturing. This work is focused on the effects of various parameters of centrifugal electrospinning on the structure and properties of poly(vinyl pyrrolidone) fibers prepared by centrifugal electrospinning. The spinning parameters of interest included spinning voltage and rotation speed, and the characteristics of fibers included spinning productivity, jet trajectory, fiber morphology, fiber diameter, and fiber alignment. It was found that there was a competitive relationship between centrifugal force and electrostatic force during fiber formation. When only centrifugal force was applied, the obtained fibers mostly exhibited a circular distribution. When the electrostatic force began to increase, the fibers became increasingly uniform in morphology and showed a distribution in the vertical circumferential direction. The fiber alignment shows that the effects of these two factors on fiber alignment are competitive. The fiber yield shows that when the rotating speed is fixed at 1500 rpm, with the increase of voltage, the yield increases significantly and then increases slowly. The results suggest that centrifugal electrospinning can be favorable in the production of nanostructured fiber materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Z, Mei S, Dong Y, She F, Kong L (2019) High efficiency fabrication of chitosan composite nanofibers with uniform morphology via centrifugal spinning. Polymers 11:1550

    Article  CAS  PubMed Central  Google Scholar 

  2. Kwak BE, Yoo HJ, Lee E, Kim DH (2021) Large-scale centrifugal multispinning production of polymer micro-and nanofibers for mask filter application with a potential of cospinning mixed multicomponent fibers. ACS Macro Lett 10:382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ning X, Li Z (2021) Centrifugally spun SnSb nanoparticle/porous carbon fiber composite as high-performance lithium-ion battery anode. Mater Lett 287:129298

    Article  CAS  Google Scholar 

  4. Saha S, Sadhukhan P, Roy Chowdhury S, Das S (2020) Rotary-Jet spin assisted fabrication of MnO2 microfiber for supercapacitor electrode application. Mater Lett 277:128342

    Article  CAS  Google Scholar 

  5. Loordhuswamy A, Thinakaran S, Rangaswamy GD (2020) Centrifugal spun osteoconductive ultrafine fibrous mat as a scaffold for bone regeneration. J Drug Deliv Sci Technol 60:101978

    Article  CAS  Google Scholar 

  6. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Li K, Mohideen MM, Ramakrishna S (2019) Melt electrospinning: a green method to produce superfine fibers. Academic, New York

    Book  Google Scholar 

  8. Li K, Xu Y, Liu Y, Mohideen MM, He H, Ramakrishna S (2019) Dissipative particle dynamics simulations of centrifugal melt electrospinning. J Mater Sci 54:9958–9968

    Article  CAS  Google Scholar 

  9. Kakiage M, Fukagawa D (2020) Preparation of ultrahigh-molecular-weight polyethylene fibers by combination of melt-spinning and melt-drawing. Mater Today Commun 23:100864

    Article  CAS  Google Scholar 

  10. Im SH, Park SJ, Chung JJ, Jung Y, Kim SH (2019) Creation of polylactide vascular scaffolds with high compressive strength using a novel melt-tube drawing method. Polymer 166:130–137

    Article  CAS  Google Scholar 

  11. Jafri NN, Jaafar J, Othman MH, Rahman MA, Aziz F, Yusof N, Salleh WN, Ismail AF (2021) Titanium dioxide hollow nanofibers for enhanced photocatalytic activities. Mater Today 46:2004–2011

    Google Scholar 

  12. Kumar A, Khanuja M (2021) Template-free graphitic carbon nitride nanosheets coated with polyaniline nanofibers as an electrode material for supercapacitor applications. Renew Energ 171:1246–1256

    Article  CAS  Google Scholar 

  13. Kang J, Choi J, Yun SI (2021) Nonsolvent-induced phase separation of poly(3-hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) blend as a facile platform to fabricate versatile nanofiber gels: Aero-, hydro-, and oleogels. Int J Biol Macromol 173:44–55

    Article  CAS  PubMed  Google Scholar 

  14. Cheng Q, Zhang Y, Zheng X, Sun W, Li B, Wang D, Li Z (2021) High specific surface crown ether modified chitosan nanofiber membrane by low-temperature phase separation for efficient selective adsorption of lithium. Sep Purif Technol 262:118312

    Article  CAS  Google Scholar 

  15. Zheng J, Fan R, Wu H, Yao H, Yan Y, Liu J, Ran L, Sun Z, Yi L, Dang L, Gan P, Zheng P, Yang T, Zhang Y, Tang T, Wang Y (2019) Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun 10:1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen D, Huynh V, Pham N, Pham B, Serelis A, Davey T, Such C, Hawkett B (2019) SPION-decorated nanofibers by RAFT-mediated free radical emulsion polymerization-induced self assembly. Macromol Rapid Commun 40:e1800402

    Article  PubMed  CAS  Google Scholar 

  17. Rosman N, Wan Salleh WN, Jamalludin MR, Adam MR, Ismail NH, Jaafar J, Harun Z, Ismail AF (2021) Electrospinning parameters evaluation of PVDF-ZnO/Ag2CO3/Ag2O composite nanofiber affect on porosity by using response surface methodology. Mater Today 46:1824–1830

    CAS  Google Scholar 

  18. Beknalkar SA, Teli AM, Harale NS, Patil DS, Pawar SA, Shin JC, Patil PS (2021) Fabrication of high energy density supercapacitor device based on hollow iridium oxide nanofibers by single nozzle electrospinning. Appl Surf Sci 546:149102

    Article  CAS  Google Scholar 

  19. Song T, Chen Z, He H, Liu Y, Ramakrishna S (2015) Orthogonal design study on factors affecting the diameter of perfluorinated sulfonic acid nanofibers during electrospinning. J Appl Polym Sci 132:41775

    Google Scholar 

  20. del Ángel-Sánchez K, Ulloa-Castillo NA, Segura-Cárdenas E, Martinez-Romero O, Elías-Zuñiga A (2019) Design, fabrication, and characterization of polycaprolactone (PCL)-TiO2-collagenase nanofiber mesh scaffolds by Forcespinning. MRS Commun 9:390–397

    Article  CAS  Google Scholar 

  21. Zander NE (2015) Formation of melt and solution spun polycaprolactone fibers by centrifugal spinning. J Appl Polym Sci 132:41269

    Article  CAS  Google Scholar 

  22. Mamidi N, Gutiérrez HML, Villela-Castrejón J, Isenhart L, Barrera EV, Elías-Zúñiga A (2017) Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release. MRS Commun 7:913–921

    Article  CAS  Google Scholar 

  23. Chang WM, Wang CC, Chen CY (2019) Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors. Electrochim Acta 296:268–275

    Article  CAS  Google Scholar 

  24. Wang L, Wang B, Ahmad Z, Li JS, Chang MW (2019) Dual rotation centrifugal electrospinning: a novel approach to engineer multi-directional and layered fiber composite matrices. Drug Deliv Transl Res 9:204–214

    Article  CAS  PubMed  Google Scholar 

  25. Erickson A, Sun J, Levengood SKL, Zhang M (2019) Hyaluronic acid-coated aligned nanofibers for the promotion of glioblastoma migration. ACS Appl Bio Mater 2:1088–1097

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Li X, Li N, Yang B (2016) Electrostatic-assisted centrifugal spinning for continuous collection of submicron fibers. Text Res J 87:2349–2357

    Article  CAS  Google Scholar 

  27. Valipouri A, Ravandi SAH, Pishevar AR (2013) A novel method for manufacturing nanofibers. Fibers Polym 14:941–949

    Article  CAS  Google Scholar 

  28. Chang WM, Wang CC, Chen CY (2014) The combination of electrospinning and forcespinning: effects on a viscoelastic jet and a single nanofiber. Chem Eng J 244:540–551

    Article  CAS  Google Scholar 

  29. Müller F, Jokisch S, Bargel H, Scheibel T (2020) Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers. ACS Appl Polym Mater 2:4360–4367

    Article  CAS  Google Scholar 

  30. Lu W, Chen W, Lu W (2020) Fabrication of a wrinkled structure made of wearable polyacrylonitrile/polyurethane composite fibers with elastic sensing properties suitable for human movement detection. Polym Compos 41:3491–3500

    Article  CAS  Google Scholar 

  31. Edmondson D, Cooper A, Jana S, Wood D, Zhang M (2012) Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. J Mater Chem 22:18646–18652

    Article  CAS  Google Scholar 

  32. Kancheva M, Toncheva A, Manolova N, Rashkov I (2014) Advanced centrifugal electrospinning setup. Mater Lett 136:150–152

    Article  CAS  Google Scholar 

  33. Heidari I, Mosavi Mashhadi M, Faraji G (2013) A novel approach for preparation of aligned electrospun polyacrylonitrile nanofibers. Chem Phys Lett 590:231–234

    Article  CAS  Google Scholar 

  34. Khamforoush M, Asgari T (2014) A modified electro-centrifugal spinning method to enhance the production rate of highly aligned nanofiber. NANO 10:1550016

    Article  CAS  Google Scholar 

  35. Liao CC, Wang CC, Chen CY, Lai WJ (2011) Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties. Polymer 52:2263–2275

    Article  CAS  Google Scholar 

  36. Liao CC, Wang CC, Chen CY (2011) Stretching-induced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet. Polymer 52:4303–4318

    Article  CAS  Google Scholar 

  37. Liao CC, Wang CC, Shih KC, Chen CY (2011) Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: effects on conformation, crystallinity, and mechanical properties. Eur Polym J 47:911–924

    Article  CAS  Google Scholar 

  38. Liao CC, Hou SS, Wang CC, Chen CY (2010) Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: the effects of molecular motion and conformation in solutions. Polymer 51:2887–2896

    Article  CAS  Google Scholar 

  39. Dabirian F, Ravandi SAH, Pishevar AR (2013) The effects of operating parameters on the fabrication of polyacrylonitrile nanofibers in electro-centrifuge spinning. Fibers Polym 14:1497–1504

    Article  CAS  Google Scholar 

  40. Dabirian F, Hosseini Ravandi AS, Pishevar RA (2010) Investigation of parameters affecting PAN nanofiber production using electrical and centrifugal forces as a novel method. Current Nanosci 6:545–552

    Article  Google Scholar 

  41. Dabirian F, Hosseini Ravandi AS, Pishevar RA, Abuzade RA (2011) A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J Electrostat 69:540–546

    Article  Google Scholar 

  42. Valipouri A, Hosseini Ravandi SA, Pishevar A (2014) Optimization of the parameters involved in fabrication of solid state polymerized polyamide (SSP PA66) nanofibers via an enhanced electro-centrifuge spinning. J Ind Text 45:368–386

    Article  CAS  Google Scholar 

  43. Wu S, Peng H, Li X, Streubel PN, Liu Y, Duan B (2017) Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L-lactic acid) fibrous meshes. Biofabrication 9:044106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hashemi AR, Pishevar AR, Valipouri A, Părău EI (2018) Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning. Phys Fluids 30:017103

    Article  CAS  Google Scholar 

  45. Peng H, Liu Y, Ramakrishna S (2017) Recent development of centrifugal electrospinning. J Appl Polym Sci 134:44578

    Google Scholar 

  46. Cao K, Liu Y, Olkhov AA, Siracusa V, Iordanskii AL (2018) PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery. Drug Deliv Transl Res 8:291–302

    Article  CAS  PubMed  Google Scholar 

  47. Gómez-Tejedor JA, Overberghe NV, Rico P, Ribelles JLG (2011) Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. Eur Polym J 47:119–129

    Article  CAS  Google Scholar 

  48. Ayres CE, Jha BS, Meredith H, Bowman JR, Bowlin GL, Henderson SC, Simpson DG (2008) Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach. J Biomater Sci Polym Ed 19:603–621

    Article  CAS  PubMed  Google Scholar 

  49. Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG (2006) Modulation of anisotropy in electrospun tissue-engineering scaffolds: analysis of fiber alignment by the fast Fourier transform. Biomaterials 27:5524–5534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi K, Giapis KP (2018) Scalable fabrication of supercapacitors by nozzle-free electrospinning. ACS Appl Energ Mater 1:296–300

    Article  CAS  Google Scholar 

  51. Xu H, Chen H, Li X, Liu C, Yang B (2014) A comparative study of jet formation in nozzle- and nozzle-less centrifugal spinning systems. J Polym Sci Part B 52:1547–1559

    Article  CAS  Google Scholar 

  52. Lord Rayleigh FRS (1882) On the equilibrium of liquid conducting masses charged with electricity. Lond Edinb Dublin Philos Mag J Sci 14:184

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Xiaozhen Yang of the Institute of Chemistry, Chinese Academy of Science, for his valuable discussions. This study was financially supported by the National Natural Science Foundation of China (21374008).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Yong Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1663 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Hu, H., Song, T. et al. Competitive effects of centrifugal force and electric field force on centrifugal electrospinning. Iran Polym J 31, 1147–1159 (2022). https://doi.org/10.1007/s13726-022-01073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01073-5

Keywords

Navigation