Skip to main content
Log in

High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyamide-imides (PAIs) are highly desired in many applications because of their superior thermal and mechanical properties. In this work, PAI was prepared from an amide-containing diamine and dianhydride by polycondensation and thermal treatment. Both PAI films and aligned electrospun nanofibers (ANFs) were fabricated. FT-IR was used to determine the structure formation of PAI at different annealing temperatures. DSC and TGA were used to evaluate the thermal properties of PAI, while tensile test was applied to evaluate the mechanical properties of PAI films and ANFs. The results indicated that the PAI possessed both outstanding thermal stability and mechanical properties, which provide opportunities for applications in gas separation, high temperature filtration, reinforcement, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Terney S, Keating J, Zielinski J, Hakala J, Sheffer H (1970) Polyamide-imides. J Polym Sci Part A Polym Chem 8(3):683–692

    Article  Google Scholar 

  2. Abbasi H, Antunes M, Velasco JI (2015) Influence of polyamide-imide concentration on the cellular structure and thermo-mechanical properties of polyetherimide/polyamide-imide blend foams. Eur Polym J 69:273–283

    Article  Google Scholar 

  3. Wang Y, Jiang L, Matsuura T, Chung TS, Goh SH (2008) Investigation of the fundamental differences between polyamide-imide (PAI) and polyetherimide (PEI) membranes for isopropanol dehydration via pervaporation. J Membr Sci 318(1):217–226. https://doi.org/10.1016/j.memsci.2008.02.033

    Article  Google Scholar 

  4. Lim SK, Setiawan L, Bae T-H, Wang R (2016) Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure. J Membr Sci 501:152–160

    Article  Google Scholar 

  5. Feng Y, Xiong T, Xu H, Li C, Hou H (2016) Polyamide-imide reinforced polytetrafluoroethylene nanofiber membranes with enhanced mechanical properties and thermal stabilities. Mater Lett 182:59–62

    Article  Google Scholar 

  6. Shen C, Khonsari MM, Spadafora M, Ludlow C (2016) Tribological performance of polyamide-imide seal ring under seawater lubrication. Tribol Lett 62(3):39

    Article  Google Scholar 

  7. Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103. https://doi.org/10.1016/j.progpolymsci.2016.06.006

    Article  Google Scholar 

  8. Hou H, Xu W, Ding Y (2018) The recent progress on high-performance polymer nanofibers by electrospinning. J Jiangxi Normal Univ (Nat Sci) 42(6):551–564. https://doi.org/10.1039/C6TA10474F

    Google Scholar 

  9. Jiang S, Han D, Huang C, Duan G, Hou H (2018) Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater Lett 216:81–83

    Article  Google Scholar 

  10. Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113(29):9741–9748. https://doi.org/10.1021/jp9025128

    Article  Google Scholar 

  11. Jian S, Liu S, Chen L, Zhou S, Fan P, Zeng Y, Hou H (2017) Nano-boria reinforced polyimide composites with greatly enhanced thermal and mechanical properties via in situ thermal conversion of boric acid. Compos Commun 3:14–17

    Article  Google Scholar 

  12. Jian S, Zhu J, Jiang S, Chen S, Fang H, Song Y, Duan G, Zhang Y, Hou H (2018) Nanofibers with diameter below one nanometer from electrospinning. RSC Adv 8(9):4794–4802. https://doi.org/10.1039/C7RA13444D

    Article  Google Scholar 

  13. Xu W, Yang T, Yu Y, Zhang C, Ding Y, Hou H (2018) The synthesis and characterization of polyimides from a novel synthesized 3,3′-(m-phenylene) dianhydride monomer. J Jiangxi Normal Univ (Nat Sci) 42(1):82–88. https://doi.org/10.1039/C6TA10474F

    Google Scholar 

  14. Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sour 226:82–86. https://doi.org/10.1016/j.jpowsour.2012.10.027

    Article  Google Scholar 

  15. Xu H, Jiang S, Ding C, Zhu Y, Li J, Hou H (2017) High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Mater Lett 201:82–84

    Article  Google Scholar 

  16. Jian S, Ding C, Yang T, Zhang C, Hou H (2018) Effect of trace diphenyl phosphate on mechanical and thermal performance of polyimide composite films. Compos Commun 7:42–46

    Article  Google Scholar 

  17. Xu W, Yu Y, Yang T, Zhang C, Hou H (2018) The synthesis and properties of new 3D-printable polyimide. J Jiangxi Normal Univ (Nat Sci) 42(4):405–410. https://doi.org/10.1039/C6TA10474F

    Google Scholar 

  18. Hu Z, Li S, Zhang C (2007) Synthesis and properties of polyamide-imides containing fluorenyl cardo structure. J Appl Polym Sci 106(4):2494–2501

    Article  Google Scholar 

  19. Liaw D-J, Liaw B-Y (2001) Synthesis and characterization of new polyamide-imides containing pendent adamantyl groups. Polymer 42(2):839–845. https://doi.org/10.1016/S0032-3861(00)00379-7

    Article  Google Scholar 

  20. Liaw D-J, Hsu P-N, Liaw B-Y (2001) Synthesis and characterization of novel polyamide-imides containing noncoplanar 2,2′-dimethyl-4,4′-biphenylene unit. J Polym Sci Part A Polym Chem 39(1):63–70. https://doi.org/10.1002/1099-0518(20010101)39:1%3c63:AID-POLA70%3e3.0.CO;2-X

    Article  Google Scholar 

  21. Liaw D-J, Hsu P-N, Chen W-H, Lin S-L (2002) High glass transitions of new polyamides, polyimides, and poly(amide–imide)s containing a triphenylamine group: synthesis and characterization. Macromolecules 35(12):4669–4676. https://doi.org/10.1021/ma001523u

    Article  Google Scholar 

  22. Park S-J, Yop Rhee K, Jin F-L (2015) Improvement of hydrophilic properties of electrospun polyamide-imide fibrous mats by atmospheric-pressure plasma treatment. J Phys Chem Solids 78:53–58. https://doi.org/10.1016/j.jpcs.2014.11.001

    Article  Google Scholar 

  23. Jang WG, Jeon KS, Byun HS (2013) The preparation of porous polyamide-imide nanofiber membrane by using electrospinning for MF application. Desalin Water Treat 51(25–27):5283–5288. https://doi.org/10.1080/19443994.2013.768755

    Article  Google Scholar 

  24. G-y Heo, Y-t Hong, S-j Park (2012) Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor. Macromol Res 20(5):503–507. https://doi.org/10.1007/s13233-012-0075-5

    Article  Google Scholar 

  25. Wang M, Jin H-J, Kaplan DL, Rutledge GC (2004) Mechanical properties of electrospun silk fibers. Macromolecules 37(18):6856–6864

    Article  Google Scholar 

  26. Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720. https://doi.org/10.1039/C8PY00378E

    Article  Google Scholar 

  27. Pai C-L, Boyce MC, Rutledge GC (2011) Mechanical properties of individual electrospun PA 6 (3) T fibers and their variation with fiber diameter. Polymer 52(10):2295–2301

    Article  Google Scholar 

  28. Koosha M, Mirzadeh H (2015) Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J Biomed Mater Res A 103(9):3081–3093

    Article  Google Scholar 

  29. Tan E, Lim C (2006) Mechanical characterization of nanofibers—a review. Compos Sci Technol 66(9):1102–1111

    Article  Google Scholar 

  30. Arinstein A, Zussman E (2011) Electrospun polymer nanofibers: mechanical and thermodynamic perspectives. J Polym Sci Part B Polym Phys 49(10):691–707

    Article  Google Scholar 

  31. Jiang S, Duan G, Chen L, Hu X, Hou H (2015) Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature. Mater Lett 140:12–15. https://doi.org/10.1016/j.matlet.2014.11.003

    Article  Google Scholar 

  32. Chen L, Jiang S, Chen J, Chen F, He Y, Zhu Y, Hou H (2015) Single electrospun nanofiber and aligned nanofiber belts from copolyimide containing pyrimidine units. New J Chem 39(11):8956–8963. https://doi.org/10.1039/C5NJ01941A

    Article  Google Scholar 

  33. Chen S, Hu P, Greiner A, Cheng C, Cheng H, Chen F, Hou H (2008) Electrospun nanofiber belts made from high performance copolyimide. Nanotechnology 19(1):015604. https://doi.org/10.1088/0957-4484/19/01/015604

    Article  Google Scholar 

  34. He Y, Han D, Chen J, Ding Y, Jiang S, Hu C, Chen S, Hou H (2014) Highly strong and highly tough electrospun polyimide/polyimide composite nanofibers from binary blend of polyamic acids. RSC Adv 4(104):59936–59942

    Article  Google Scholar 

  35. Scheiner S, Kar T (2002) Red- versus blue-shifting hydrogen bonds: are there fundamental distinctions? J Phys Chem A 106(9):1784–1789. https://doi.org/10.1021/jp013702z

    Article  Google Scholar 

  36. Chocholoušová J, Špirko V, Hobza P (2004) First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H···O and improper blue-shifted C–H···O hydrogen bonds. PCCP 6(1):37–41. https://doi.org/10.1039/B314148A

    Article  Google Scholar 

  37. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129(15):4620–4632. https://doi.org/10.1021/ja067545z

    Article  Google Scholar 

  38. Snyder R, Thomson B, Bartges B, Czerniawski D, Painter P (1989) FTIR studies of polyimides: thermal curing. Macromolecules 22(11):4166–4172

    Article  Google Scholar 

  39. Yang H, Jiang S, Fang H, Hu X, Duan G, Hou H (2018) Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 200:339–344. https://doi.org/10.1016/j.saa.2018.04.045

    Article  Google Scholar 

  40. Zhang H, Jiang S, Duan G, Li J, Liu K, Zhou C, Hou H (2014) Heat-resistant polybenzoxazole nanofibers made by electrospinning. Eur Polym J 50:61–68

    Article  Google Scholar 

  41. Huang CB, Chen SL, Reneker DH, Lai CL, Hou HQ (2006) High-strength mats from electrospun poly(p-phenylene biphenyltetracarboximide) nanofibers. Adv Mater 18(5):668. https://doi.org/10.1002/adma.200501806

    Article  Google Scholar 

  42. Jiang S, Duan G, Chen L, Hu X, Hou H (2015) Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature. Mater Lett 140:12–15

    Article  Google Scholar 

  43. Bazbouz MB, Stylios GK (2010) The tensile properties of electrospun nylon 6 single nanofibers. J Polym Sci Pt B-Polym Phys 48(15):1719–1731. https://doi.org/10.1002/polb.21993

    Article  Google Scholar 

  44. Hwang KY, Kim S-D, Kim Y-W, Yu W-R (2010) Mechanical characterization of nanofibers using a nanomanipulator and atomic force microscope cantilever in a scanning electron microscope. Polym Test 29(3):375–380. https://doi.org/10.1016/j.polymertesting.2010.01.002

    Article  Google Scholar 

  45. Jiang SH, Hou HQ, Greiner A, Agarwal S (2012) Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-formaldehyde composites. ACS Appl Mater Interfaces 4(5):2597–2603. https://doi.org/10.1021/am300286m

    Article  Google Scholar 

  46. Chen D, Liu TX, Zhou XP, Tjiu WC, Hou HQ (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113(29):9741–9748. https://doi.org/10.1021/jp9025128

    Article  Google Scholar 

  47. Peng L, Jiang SH, Seuss M, Fery A, Lang G, Scheibel T, Agarwal S (2016) Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(l-lactide) by electrospinning. Macromol Mater Eng 301(1):48–55. https://doi.org/10.1002/mame.201500217

    Article  Google Scholar 

  48. Feng Y, Xiong T, Jiang S, Liu S, Hou H (2016) Mechanical properties and chemical resistance of electrospun polyterafluoroethylene fibres. RSC Adv 6(29):24250–24256. https://doi.org/10.1039/C5RA27676D

    Article  Google Scholar 

  49. Liverani L, Boccaccini AR (2016) Versatile production of poly(epsilon-caprolactone) fibers by electrospinning using benign solvents. Nanomaterials (Basel, Switzerland) 6(4):75. https://doi.org/10.3390/nano6040075

    Google Scholar 

  50. Tan EPS, Ng SY, Lim CT (2005) Tensile testing of a single ultrafine polymeric fiber. Biomaterials 26(13):1453–1456. https://doi.org/10.1016/j.biomaterials.2004.05.021

    Article  Google Scholar 

  51. Jiang SH, Duan GG, Zussman E, Greiner A, Agarwal S (2014) Highly flexible and tough concentric triaxial polystyrene fibers. ACS Appl Mater Interfaces 6(8):5918–5923. https://doi.org/10.1021/am500837s

    Article  Google Scholar 

  52. Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16(2):208–213. https://doi.org/10.1088/0957-4484/16/2/005

    Article  Google Scholar 

  53. Zhang HA, Jiang SH, Duan GG, Li JH, Liu KM, Zhou CY, Hou HQ (2014) Heat-resistant polybenzoxazole nanofibers made by electrospinning. Eur Polym J 50:61–68. https://doi.org/10.1016/j.eurpolymj.2013.10.029

    Article  Google Scholar 

  54. Chen K, Zhang S, Liu B, Mao X, Sun G, Yu J, Aldeyab S, Ding B (2014) Large-scale fabrication of highly aligned poly(m-phenylene isophthalamide) nanofibers with robust mechanical strength. Rsc Adv 4(86):45760–45767

    Article  Google Scholar 

Download references

Acknowledgements

Natural Science Foundation of Jiangsu Province of China (BK20180770); National Natural Science Foundation of China (51803093, 21574060 and 21374044); Major Special Projects of Jiangxi Provincial Department of Science and Technology (20114ABF05100); Technology Plan Landing Project of Jiangxi Provincial Department of Education (GCJ2011-24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohua Jiang or Haoqing Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, G., Liu, S., Jiang, S. et al. High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine. J Mater Sci 54, 6719–6727 (2019). https://doi.org/10.1007/s10853-019-03326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03326-w

Navigation