Skip to main content
Log in

Fabrication and Performance of Multi-wall Carbon Nanotubes Reinforced Polyimide Electrospun Nanofiber Membranes

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyimide (PI) nanofiber membranes (NFMs) via electrospinning demonstrate widespread applications with an intrinsic drawback of lower mechanical performance, which could be improved with multi-wall carbon nanotubes (MWCNTs). PI NFMs was fabricated via a simple thermal induced imidization of polyamic acid (PAA) NFMs and MWCNTs/PI composite NFMs were also investigated on the effect of MWCNTs on morphology, mechanical performance, and its possible carbonization. Such simply thermal induced imidization of PAA demonstrates successfully to be PI, and small amounts of MWCNTs could reduce the diameter and distribution of MWCNTs/PI nanofibers, and coarse and granular-like surface appeared on MWCNTs/PI composite nanofibers as the MWCNTs was increased up to 1.0 wt.%. Notably, addition of MWCNTs improved thermal stability and mechanical performance of MWCNTs/PI composite NFMs, but it lowered the mechanical performance of such composite NFMs at higher carbonization temperatures, which makes its carbonized NFMs even more inclined to be fragile and fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author [T. Yan] upon reasonable request.

References

  1. J. Stanger, N. Tucker, K. Kirwan, M.P. Staiger, Effect of charge density on the Taylor cone in electrospinning. Int. J. Modern Phys. B 23(7), 1956–1961 (2009)

    Article  CAS  Google Scholar 

  2. A. Nadaf, A. Gupta, N. Hasan, S. Fauziya, P. Ahmad, F.J.A. Kesharwani, Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv. 12(37), 23808–23828 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Vahabi, H. Wu, M.R. Saeb, J.H. Koo, S. Ramakrishna, Electrospinning for developing flame retardant polymer materials: Current status and future perspectives. Polymer 217, 123466 (2021)

    Article  CAS  Google Scholar 

  5. R. Ishige, C.L. Song, S. Hara, S. Ando, S.G. Kazarian, Analysis of spatial orientation distribution of highly oriented polyimide film using micro ATR-FTIR spectroscopic imaging method. Polymer 221, 123616 (2021)

    Article  CAS  Google Scholar 

  6. R. Yuan, Y. Zhou, X. Fan, Q. Lu, Negative-poisson-ratio polyimide aerogel fabricated by tridirectional freezing for high- and low-temperature and impact-resistant applications. Chem. Eng. J. 433, 134404 (2022)

    Article  CAS  Google Scholar 

  7. Y.-Y. Liu, Y.-K. Wang, D.-Y. Wu, Synthetic strategies for highly transparent and colorless polyimide film. J. Appl. Polym. Sci. 139(28), e52604 (2022)

    Article  CAS  Google Scholar 

  8. R. Khazaka, M.L. Locatelli, S. Diaham, P. Bidan, Endurance of thin insulation polyimide films for high-temperature power module applications. IEEE Transact. Comp. Packag. Manuf. Technol. 3(5), 811–817 (2013)

    Article  CAS  Google Scholar 

  9. S. Mandal, G. Song, An empirical analysis of thermal protective performance of fabrics used in protective clothing. Ann. Occup. Hyg. 58(8), 1065–1077 (2014)

    CAS  PubMed  Google Scholar 

  10. Y. Wang, M. Shang, Y. Wang, B. Cui, Z. Qiu, H. Li, Y. Wang, Polyimide composite films reinforced by graphene quantum dots. Fullerenes, Nanotubes, Carbon Nanostruct. 30(6), 683–691 (2022)

    Article  CAS  Google Scholar 

  11. G. Sun, G. Dong, L. Kong, X. Yan, G. Tian, S. Qi, D. Wu, Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10(47), 22439–22447 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. B. Yi, Y. Zhao, E. Tian, J. Li, Y. Ren, High-performance polyimide nanofiber membranes prepared by electrospinning. High Perform. Polym. 31(4), 438–448 (2018)

    Article  Google Scholar 

  13. A.K. Gautam, C. Lai, H. Fong, T.J. Menkhaus, Electrospun polyimide nanofiber membranes for high flux and low fouling microfiltration applications. J. Membr. Sci. 466, 142–150 (2014)

    Article  CAS  Google Scholar 

  14. Y. Kim, X. Wu, J.H. Oh, Fabrication of triboelectric nanogenerators based on electrospun polyimide nanofibers membrane. Sci. Rep. 10(1), 2742 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. V.E. Ogbonna, A.P.I. Popoola, O.M. Popoola, S.O. Adeosun, A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement. Polym. Bull. 79(1), 663–695 (2022)

    Article  CAS  Google Scholar 

  16. T.D. Mekuria, T.A. Wogsato, Synthesis, characterization and properties of polyimide nanocomposite thin films reinforced with TiO2/Al2O3 hybrid nanoparticles. Mater. Today Communicat. 32, 103903 (2022)

    Article  CAS  Google Scholar 

  17. Z. Wu, J. Dong, C. Teng, X. Li, X. Zhao, X. Qin, C. Ji, Q. Zhang, Polyimide-based composites reinforced by carbon nanotube-grafted carbon fiber for improved thermal conductivity and mechanical property. Comp. Communicat. 39, 101543 (2023)

    Google Scholar 

  18. B. Chen, H. Cai, C. Mao, Y. Gan, Y. Wei, Toughening and rapid self-healing for carbon fiber/epoxy composites based on electrospinning thermoplastic polyamide nanofiber. Polym. Compos. 43(5), 3124–3135 (2022)

    Article  CAS  Google Scholar 

  19. C. Harito, R. Porras, D.V. Bavykin, F.C. Walsh, Electrospinning of in situ and ex situ synthesized polyimide composites reinforced by titanate nanotubes. J. Appl. Polym. Sci. 134(13), 44641 (2017)

    Article  Google Scholar 

  20. F. Liu, Z. Liu, S. Gao, Q. You, L. Zou, J. Chen, J. Liu, X. Liu, Polyimide film with low thermal expansion and high transparency by self-enhancement of polyimide/SiC nanofibers net. RSC Adv. 8(34), 19034–19040 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. W.-C. Liaw, Y.-L. Cheng, Y.-S. Liao, C.-S. Chen, S.-M. Lai, Complementary functionality of SiO2 and TiO2 in polyimide/silica-titania ternary hybrid nanocomposites. Polym. J. 43(3), 249–257 (2011)

    Article  CAS  Google Scholar 

  22. N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 1, 100003 (2020)

    Article  Google Scholar 

  23. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626–631 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. D. Zhai, H. Zhao, Z. Gao, Y. Guo, Q. Li, G. Wang, G. Zhao, Surface treatment of multiwalled carbon nanotubes and the formation of the multiscale conductivity network in long carbon fiber reinforced polypropylene. Polym. Compos. 43(7), 4645–4659 (2022)

    Article  CAS  Google Scholar 

  25. H. Bian, J. Xue, G. Hao, Y. Hao, M. Xie, C. Wang, Z. Wang, L. Zhu, Y. Xiao, High thermal conductivity graphene oxide/carbon nanotubes/butyl rubber composites prepared by a dry ice expansion pre-dispersion flocculation method. J. Appl. Polym. Sci. 139(14), 51897 (2022)

    Article  CAS  Google Scholar 

  26. B.-K. Zhu, S.-H. Xie, Z.-K. Xu, Y.-Y. Xu, Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos. Sci. Technol. 66(3), 548–554 (2006)

    Article  CAS  Google Scholar 

  27. I.V. Gofman, K. Balik, M. Cerny, M. Zaloudkova, M.J. Goikhman, V.E. Yudin, Peculiarities of the initial stages of carbonization processes in polyimide-based nanocomposite films containing carbon nanoparticles. Cogent Chem. 1(1), 1076712 (2015)

    Article  Google Scholar 

  28. Y. Wang, J. Sun, L.J.K.E.M. Dai, The properties of polyimide fibers modified by functionalized muti-wall carbon nanotubes based on friedel-crafts acylation. Key Eng. Mater. 727, 490–496 (2017)

    Article  Google Scholar 

  29. W. Chen, M. Ji, S.-Y. Yang, High thermal stable polyimide resins derived from phenylethynyl-endcapped fluorenyl oligoimides with low melt viscosities. Chin. J. Polym. Sci. 34(8), 933–948 (2016)

    Article  CAS  Google Scholar 

  30. L. Jian, Effect of surface treatment on enhancing interfacial strength of carbon fiber/polyimide composites. J. Thermoplast. Compos. Mater. 35(5), 708–719 (2020)

    Article  Google Scholar 

  31. Y.-E. Miao, G.-N. Zhu, H. Hou, Y.-Y. Xia, T. Liu, Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J. Power Sources 226, 82–86 (2013)

    Article  CAS  Google Scholar 

  32. W. Yang, F. Liu, H. Chen, X. Dai, W. Liu, X. Qiu, X. Ji, Influence of heating rate on the structure and mechanical properties of aromatic BPDA-PDA polyimide Fiber. Polymers 12(3), 510 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. Lin, R. Li, T. Li, Y. Zi, S. Qi, D. Wu, Effects of pre-imidization on rheological behaviors of polyamic acid solution and thermal mechanical properties of polyimide film: an experiment and molecular dynamics simulation. J. Mater. Sci. 56(26), 14518–14530 (2021)

    Article  CAS  Google Scholar 

  34. R. Shokrani Havigh, H. Mahmoudi Chenari, A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Scientif. Rep. 12(1), 10704 (2022)

    Article  CAS  Google Scholar 

  35. A. Thamizhlarasan, N. Murugan, Y.-C. Liu, R. Anbarasan, K.-L. Tung, Effect of amine and acid functionalization on polyimide: A structure-property relationship study. React. Funct. Polym. 173, 105237 (2022)

    Article  CAS  Google Scholar 

  36. D. Zhang, J. Dong, F. Gan, Z. Li, Q. Zhang, Structural evolution from poly(amic acid) to polyimide fibers during thermal imidization process. High Perform. Polym. 31(5), 600–610 (2018)

    Article  Google Scholar 

  37. D. Lin, M. Jiang, R. Li, S. Qi, D. Wu, Structure and properties of polyimide fiber prepared from polyamic acid solution with high solid content and low viscosity. Mater. Lett. 312, 131628 (2022)

    Article  CAS  Google Scholar 

  38. G.V. Vaganov, A.L. Didenko, E.M. Ivan’kova, A.G. Ivanov, I.L. Borisov, A.V. Volkov, Influence of temperature and imidization method on the structure and properties of polyimide fibers prepared by wet spinning. Russ. Chem. Bull. 71(4), 760–765 (2022)

    Article  CAS  Google Scholar 

  39. M. Kotera, T. Nishino, K. Nakamae, Imidization processes of aromatic polyimide by temperature modulated DSC. Polymer 41(10), 3615–3619 (2000)

    Article  CAS  Google Scholar 

  40. W. Chen, W. Chen, B. Zhang, S. Yang, C.-Y. Liu, Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 109, 205–215 (2017)

    Article  CAS  Google Scholar 

  41. I. Benfridja, S. Diaham, F. Laffir, G. Brennan, N. Liu, T. Kennedy, A universal study on the effect thermal imidization has on the physico-chemical, mechanical, thermal and electrical properties of polyimide for integrated electronics applications. Polymers 14(9), 1713 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K.D.-H. Kim Beom-Kyung, C. Jae-Sun, K. Young-Ju, S. In-Seon, K. Soon-Ki, Molecular orientation of evaporated pentacene film on polyimide alignment layer. Polymer (Korea) 30(4), 362–366 (2006)

    Google Scholar 

  43. W. Xu, Y. Ding, S. Jiang, J. Zhu, W. Ye, Y. Shen, H. Hou, Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur. Polymer J. 59, 129–135 (2014)

    Article  CAS  Google Scholar 

  44. M.A. Takassi, A. Zadehnazari, A. Farhadi, S. Mallakpour, Highly stable polyimide composite films based on 1,2,4-triazole ring reinforced with multi-walled carbon nanotubes: Study on thermal, mechanical, and morphological properties. Prog. Org. Coat. 80, 142–149 (2015)

    Article  CAS  Google Scholar 

  45. H. Wei, L. Xu, J. Ren, L. Jia, Adsorption of bilirubin to magnetic multi-walled carbon nanotubes as a potential application in bound solute dialysis. Colloids Surf., A 405, 38–44 (2012)

    Article  CAS  Google Scholar 

  46. M.-X. Tao, J.-S. Fan, J.-G. Nie, Seismic behavior of steel reinforced concrete column–steel truss beam hybrid joints. Eng. Struct. 56, 1557–1569 (2013)

    Article  Google Scholar 

  47. D. An, T. Liu, H. Cui, Z. Chen, H. Xu, Y. Song, Study of the factors influencing load displacement curve of energy absorbing device by area division simulation. Sci. Rep. 12(1), 13492 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S.R. Goodyear, R.M. Aspden, Mechanical properties of bone ex vivo, in Bone research protocols. ed. by M.H. Helfrich, S.H. Ralston (Humana Press, Totowa, NJ, 2012), pp.555–571

    Chapter  Google Scholar 

  49. H. Sun, T. Wang, Y. Xu, W. Gao, P. Li, Q.J. Niu, Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation. Sep. Purif. Technol. 177, 327–336 (2017)

    Article  CAS  Google Scholar 

  50. S. Chen, L. Chen, Y. Wang, C. Wang, M. Miao, D. Zhang, Preparation of nanocomposites with epoxy resins and thiol-functionalized carbon nanotubes by thiol-ene click reaction. Polym. Testing 77, 105912 (2019)

    Article  Google Scholar 

  51. A.C. Lua, J. Su, Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton polyimide. Carbon 44(14), 2964–2972 (2006)

    Article  CAS  Google Scholar 

  52. M. Devi, S. Rawat, S. Sharma, A comprehensive review of the pyrolysis process: from carbon nanomaterial synthesis to waste treatment. Oxford Open Mater. Sci. 1(1), itab014 (2021)

    Article  Google Scholar 

  53. B. Zhang, P. Wu, H. Zou, P. Liu, Morphology and properties of polyimide/multi-walled carbon nanotubes composite aerogels. High Perform. Polym. 30(3), 292–302 (2017)

    Article  Google Scholar 

  54. W. Hao, X. Zhang, Tian thermal, mechanical, and microstructural study of PBO fiber during carbonization. Materials (2019). https://doi.org/10.3390/ma12040608

    Article  PubMed  PubMed Central  Google Scholar 

  55. P. Gutmann, J. Moosburger-Will, S. Kurt, Y. Xu, S. Horn, Carbonization of polyacrylonitrile-based fibers under defined tensile load: Influence on shrinkage behavior, microstructure, and mechanical properties. Polym. Degrad. Stab. 163, 174–184 (2019)

    Article  CAS  Google Scholar 

  56. D.H.-D. Zhang Zhen-xing, L.I. Jia, G.A.N. Lin, C.H.I.A.N.G. Sum-wai, L.I. Bao-hua, K.A.N.G. Fei-yu, Preparation of aligned polyimide-based carbon nanofibers by electrospinning. Newcarbon materials 30(4), 298–294 (2015)

    Google Scholar 

  57. Z.-X. Zhang, H.-D. Du, J. Li, L. Gan, S.-W. Chiang, B.-H. Li, F.-Y. Kang, Preparation of aligned polyimide-based carbon nanofibers by electrospinning. Carbon 95, 1082 (2015)

    Article  Google Scholar 

  58. K.S. Yang, D.D. Edie, D.Y. Lim, Y.M. Kim, Y.O. Choi, Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon 41(11), 2039–2046 (2003)

    Article  CAS  Google Scholar 

Download references

Funding

China Scholarship Council, 202008350058, Taohai Yan, Fujian Science and Technology Project Guidance Project, 2022H0049, Taohai Yan, Fuzhou Science and Technology Major Project, 2021-Z-3, Taohai Yan, The 2020 Shanghai Higher Education Teacher Training Plan of Shanghai Municipal Education Commission Teacher Professional Development Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taohai Yan.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Yan, T. Fabrication and Performance of Multi-wall Carbon Nanotubes Reinforced Polyimide Electrospun Nanofiber Membranes. Fibers Polym 24, 3787–3798 (2023). https://doi.org/10.1007/s12221-023-00337-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00337-y

Keywords

Navigation