Skip to main content

Advertisement

Log in

Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Environmental energy harvesting devices hold great prospect for the next generation electronics, which have attracted intensive attentions recently. In this research, a gradient polyoxometalates-modified graphene oxide (g-POMs-GO) with three-dimensional cross-linking inner structure is synthesized by a weak reductant of GO with ethylenediamine and a special soaking treatment in phosphotungstic acid (HPW). Owing to the gradient introduction of HPW, the as-prepared g-POMs-GO is able to provide moisture-enabled current output of 6.2 uA cm−2 with a power density of ≈ 0.7 mW m−2 by harvesting energy from moisture. Moreover, the humidity-to-electric conversion device of g-POMs-GO provides a new, practical method to track the respiratory activity of subjects and can directly use to record and analyze patterns of human breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  Google Scholar 

  2. Burschka J, Pellet N, Moon SJ, Humphrybaker R, Gao P, Nazeeruddi MK (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  Google Scholar 

  3. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    Article  Google Scholar 

  4. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  Google Scholar 

  5. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  6. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  7. Yang R, Qin Y, Dai L, Wang ZL (2009) Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 4:34–39

    Article  Google Scholar 

  8. Wang X, Song J, Liu J, Wang ZL (2007) Direct current nanogenerator driven by ultrasonic wave. Science 316:102–105

    Article  Google Scholar 

  9. Jeong CK, Park KI, Son JH, Hwang GT, Lee SH, Park DY, Lee HE, Lee HK, Byun M, Lee KJ (2014) Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ Sci 7:4035–4043

    Article  Google Scholar 

  10. Zhu G, Pan C, Guo W, Chen CY, Zhou Y, Yu R, Wang ZL (2012) Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:4960–4965

    Article  Google Scholar 

  11. Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang ZL (2013) Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13:2226–2233

    Article  Google Scholar 

  12. Zhu G, Chen J, Zhang T, Jing Q, Wang Z (2014) Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun 5:3426–3432

    Article  Google Scholar 

  13. Jing Q, Xie Y, Zhu G, Han RP, Wang ZL (2015) Self-powered thin-film motion vector sensor. Nat Commun 6:8031–8037

    Article  Google Scholar 

  14. Jeong CK, Baek KM, Niu S, Nam TW, Hur YH, Park DY, Lee KJ (2014) Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett 14:7031–7038

    Article  Google Scholar 

  15. Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044

    Article  Google Scholar 

  16. Dhiman P, Yavari F, Mi X, Gullapalli H, Shi YP, Ajayan M, Koratkar N (2011) Harvesting energy from water flow over graphene. Nano Lett 11:3123–3127

    Article  Google Scholar 

  17. Guo W, Cheng C, Wu Y, Jiang Y, Gao J, Li D, Jiang L (2013) Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25:6064–6068

    Article  Google Scholar 

  18. Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W (2014) Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 9:378–383

    Article  Google Scholar 

  19. Wan S, Li Y, Mu J, Aliev AE, Fang S, Kotov NA, Jiang L, Cheng Q, Baughman RH (2018) Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. PNAS 115:5359–5364

    Article  Google Scholar 

  20. Gong S, Ni H, Jiang L, Cheng Q (2017) Learning from nature: constructing high performance graphene-based nanocomposites. Mater Today 20:210–219

    Article  Google Scholar 

  21. Wan S, Peng J, Jiang L, Cheng Q (2016) Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv Mater 28:7862–7898

    Article  Google Scholar 

  22. Zhang Y, Gong S, Zhang Q, Ming P, Wan S, Peng J, Jiang L, Cheng Q (2016) Graphene-based artificial nacre nanocomposites. Chem Soc Rev 45:2378–2395

    Article  Google Scholar 

  23. Gao W, Wu G, Janicke MT, Cullen DA, Mukundan R, Baldwin JK, Brosha EL, Galande C, Ajayan PM, More KL, Dattelbaum AM, Zelenay P (2014) Ozonated graphene oxide film as a proton-exchange membrane. Angew Chem Int Ed 53:3588–3593

    Article  Google Scholar 

  24. Hatakeyama K, Karim MR, Ogata C, Tateishi H, Funatsu A, Taniguchi T, Koinuma M, Hayami S, Matsumoto Y (2014) Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets. Angew Chem Int Ed 53:6997–7000

    Article  Google Scholar 

  25. Karim MR, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S, Yamada T, Kitagawa H, Hayami S (2013) Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 135:8097–8100

    Article  Google Scholar 

  26. Gao W, Singh N, Song L, Liu Z, Reddy AL, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500

    Article  Google Scholar 

  27. Liu Y, Liu S, Lai X, Miao J, He D, Li N, Luo F, Shi Z, Liu S (2015) Polyoxometalates-modified sponge-like graphene oxide monolith with high proton-conducting performance. Adv Funct Mater 25:4480–4485

    Article  Google Scholar 

  28. Kim S, Zhou S, Hu Y, Acik M, Chabal YJ, Berger C, de Heer W, Bongiorno A, Riedo E (2012) Room-temperature metastability of multilayer graphene oxide films. Nat Mater 11:544–549

    Article  Google Scholar 

  29. Cheng H, Hu Y, Zhao F, Dong Z, Wang Y, Chen N, Zhang Z, Qu L (2014) Moisture-activated torsional graphene-fiber motor. Adv Mater 26:2909–2913

    Article  Google Scholar 

  30. Zhao F, Cheng H, Zhang Z, Jiang L, Qu L (2015) Direct power generation from a graphene oxide film under moisture. Adv Mater 27:4351–4357

    Article  Google Scholar 

  31. Zhao F, Liang Y, Cheng H, Jiang L, Qu L (2016) Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ Sci 9:912–916

    Article  Google Scholar 

  32. Liu K, Yang P, Li S, Li J, Ding T, Xue G, Chen Q, Feng G, Zhou J (2016) Induced potential in porous carbon films through water vapor absorption. Angew Chem Int Ed 55:8003–8007

    Article  Google Scholar 

  33. Katsoulis DE (1998) A Survey of applications of polyoxometalates. Chem Rev 98:359–387

    Article  Google Scholar 

  34. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  Google Scholar 

  35. Yoon M, Suh K, Natarajan S, Kim K (2013) Proton conduction in metal-organic frameworks and related modularly built porous Solids. Angew Chem Int Ed 52:2688–2700

    Article  Google Scholar 

  36. Liu J, Wang Z, Zhao Y, Cheng H, Hu C, Jiang L, Qu L (2012) Three-dimensional graphene-polypyrrole hybrid electrochemical actuator. Nanoscale 4:7563–7568

    Article  Google Scholar 

  37. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  38. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene-based materials: graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  Google Scholar 

  39. Nakamura O, Kodama T, Ogino I, Miyake Y (1979) High-conductivity solid proton conductors: dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem Lett 8:17–18

    Article  Google Scholar 

Download references

Acknowledgements

This project is sponsored by the Fundamental Research Funds for the Central Universities (DC. 201502080403), the National Natural Science Foundation of China (Nos. 11804044, 61771092), and the Natural Science Foundation of Liaoning Province (No. 2015020072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Qi, Y., Liu, D. et al. Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith. J Mater Sci 54, 4831–4841 (2019). https://doi.org/10.1007/s10853-018-3183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3183-6

Keywords

Navigation