Skip to main content
Log in

Investigation on the melting and crystallization behaviors, mechanical properties and morphologies of polypropylene/sericite composites

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sericite was treated with pimelic acid (PA) and PA/Ca(OH)2 by wet grinding, separately. The particle size of the sericite decreased after ball milling. The carboxylates were produced after the treatments. Polypropylene (PP)/sericite composites were prepared by using a twin-screw extruder. The melting and crystallization behaviors, mechanical properties, morphologies, heat resistances and processing properties of the composites were investigated. It is found that potassium pimelate (PA-K) and calcium pimelate (PA-Ca) are effective β nucleating agents for PP, while PA and aluminum pimelate (PA-Al) are α nucleating agents. PA-treated sericite increases the β crystal content of the composites at 1 wt% content due to the presence of PA-K. PA/Ca(OH)2-treated sericite greatly enhances the β crystal contents of the composites because of the best β-nucleating agent, PA-Ca. The addition of untreated and treated sericites increases crystallization temperature, reflecting the heterogeneous nucleation effects, especially for PA/Ca(OH)2-treated sericite. The tensile strengths of treated sericite composites are improved when the filler contents are less than 5 wt%. The tensile yield strength and flexural modulus of untreated sericite composites are higher than those of treated sericite composites. Higher β crystal contents in PA/Ca(OH)2-treated sericite composites lead to increased tensile strain at break and Izod notched impact strength. The morphologies of the impact-fractured surfaces show that the treated sericites improve the interface adhesion, and the orientation of sericite flakes facilitates the impact resistance. The heat deflection temperatures, shrinkages and densities of treated sericite composites are greater than those of untreated sericite composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Liang JZ, Li RKY (2015) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77(2):409–417

    Article  Google Scholar 

  2. Wang JF, Guo JW, Li CH, Yang S, Wu H, Guo SY (2014) Crystallization kinetics behavior, molecular interaction, and impact-induced morphological evolution of polypropylene/poly(ethylene-co-octene) blends: insight into toughening mechanism. J Polym Res 21(12):618

    Article  CAS  Google Scholar 

  3. Yang H, Zhang Q, Guo M, Gou M, Wang C, Du R, Fu Q (2006) Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47(6):2106–2115

    Article  CAS  Google Scholar 

  4. Jahani Y (2011) Comparison of the effect of mica and talc and chemical coupling on the rheology, morphology, and mechanical properties of polypropylene composites. Polym Adv Technol 22(6):942–950

    Article  CAS  Google Scholar 

  5. Gafur MA, Nasrin R, Mina MF, Bhuiyan MAH, Tamba Y, Asano T (2010) Structures and properties of the compression-molded isotactic-polypropylene/talc composites: effect of cooling and rolling. Polym Degrad Stab 95(9):1818–1825

    Article  CAS  Google Scholar 

  6. Meng MR, Dou Q (2009) Effect of filler treatment on crystallization, morphology and mechanical properties of polypropylene/calcium carbonate composites. J Macromol Sci Part B Phys 48(2):213–225

    Article  CAS  Google Scholar 

  7. Dou Q, Meng MR, Li L (2010) Effect of pimelic acid treatment on the crystallization, morphology, and mechanical properties of isotactic polypropylene/mica composites. Polym Compos 31(9):1572–1584

    Article  CAS  Google Scholar 

  8. Li XX, Wu HY, Wang Y, Bai HW, Liu L, Huang T (2010) Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process. Mater Sci Eng A 527(3):531–538

    Article  Google Scholar 

  9. Zhao SC, Cai Z, Xin Z (2008) A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49(11):2745–2754

    Article  CAS  Google Scholar 

  10. Juhász P, Varga J, Belina K, Marand H (2002) Determination of the equilibrium melting point of the β-form of polypropylene. J Therm Anal Calorim 69(2):561–574

    Article  Google Scholar 

  11. Fujiyama M (1995) Structures and properties of injection moldings of β-Crystal nucleator-added polypropylenes Part 1 effect of β-crystal nucleator content. Int Polym Process 10(2):172–178

    Article  CAS  Google Scholar 

  12. Fujiyama M (1995) Structure and properties of injection moldings of β-crystal nucleator-added polypropylene Part 2 effect of MFI of base resin. Int Polym Process 10(3):251–254

    Article  CAS  Google Scholar 

  13. Fujiyama M (1996) Structures and properties of injection moldings of β-crystal nucleator-added polypropylenes Part 3 comparison of nucleating effect between γ-quinacridone and quinacridonequinone. Int Polym Process 11(3):271–274

    Article  CAS  Google Scholar 

  14. Fujiyama M (1998) Structure and properties of injection moldings of β-crystal nucleator-added PP Part 4, effect of copolymerizations with ethylene of base resin. Int Polym Process 13(3):291–298

    Article  CAS  Google Scholar 

  15. Fujiyama M (1998) Structure and properties of injection moldings of β-crystal nucleator-added PP Part 5, co-addition of β-and α-crystal nucleators. Int Polym Process 13(4):406–410

    Article  CAS  Google Scholar 

  16. Fujiyama M (1998) Structure and properties of injection moldings of β-crystal nucleator-added PP Part 6, Addition of β-Crystal nucleator to particulate-filled polypropylenes. Int Polym Process 13(4):411–416

    Article  CAS  Google Scholar 

  17. Dou Q, Xue JF (2015) Effect of an In-situ nucleating agent on the polymorphs and mechanical properties of isotactic polypropylene. J Macromol Sci Part B Phys 54(8):947–961

    Article  CAS  Google Scholar 

  18. Varga J (2002) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B Phys 41(4–6):1121–1171

    Article  Google Scholar 

  19. Grein C (2005) Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci 188:43–104

    Article  CAS  Google Scholar 

  20. Tjong SC, Shen JS, Li RKY (1995) Impact fracture toughness of β-Form polypropylene. Scr Metall Mater 33(3):503–508

    Article  CAS  Google Scholar 

  21. Aboulfaraj M, Ulrich B, Dahoun A, G’Sell C (1993) Spherulitic morpholoy of isotactic polypropylene investigated by scanning electron microscopy. Polymer 34(23):4817–4825

    Article  CAS  Google Scholar 

  22. Varga J, Tóth FS (1991) Filled compounds of the β-modification of polypropylene. Angew Makromol Chem 188(1):11–25

    Article  CAS  Google Scholar 

  23. Li L, Dou Q (2011) Effect of malonic acid treatment on crystal structure, melting behavior, morphology, and mechanical properties of isotactic polypropylene/nano-CaCO3 composites. J Macromol Sci Part B Phys 50(5):831–845

    Article  CAS  Google Scholar 

  24. Li L, Dou Q (2009) Effects of malonic acid treatment on crystal structure, melting behavior, morphology, and mechanical properties of isotactic poly(propylene)/wollastonite composites. Polym Compos 31(6):966–973

    Article  Google Scholar 

  25. Duan JW, Dou Q (2013) Investigation on β-polypropylene/PP-g-MAH/surface treated talc composites. J Appl Polym Sci 130(1):206–221

    Article  CAS  Google Scholar 

  26. Duan JW, Dou Q (2016) Melting and crystallization behaviors, morphology, and mechanical properties of β-polypropylene/polypropylene-graft-maleic anhydride/calcium sulfate whisker composites. Polym Compos 37(7):2121–2132

    Article  Google Scholar 

  27. Duan JW, Dou Q (2012) Investigation on β-polypropylene/PP-g-MAH/surface-treated calcium carbonate composites. Polym Compos 33(12):2245–2261

    Article  CAS  Google Scholar 

  28. Adur AM, Constable RC, Humenik JA (1988) Use of acrylic acid-modified polyolefins to improve performance properties of mica filled polyolefins. J Thermoplast Compos Mater 1(2):196–205

    Article  Google Scholar 

  29. Karger-Kocsis J (1995) Polypropylene structure, blends and composites. Springer, The Netherlands

    Google Scholar 

  30. Miller E (1995) Introduction to plastics and composites. CRC Press, Boca Raton

    Google Scholar 

  31. Sancaktar E, Walker E (2004) Effects of calcium carbonate, talc, mica, and glass-fiber fillers on the ultrasonic weld strength of polypropylene. J Appl Polym Sci 94(5):1986–1998

    Article  CAS  Google Scholar 

  32. Trotignon JP, Sanschagrin B, Piperaud M, Verdu J (1982) Mechanical properties of mica-reinforced polypropylene composites. Polym Compos 3(4):230–238

    Article  CAS  Google Scholar 

  33. Okuno K, Woodhams RT (1975) Mica reinforced polypropylene. Polym Eng Sci 15(4):308–315

    Article  CAS  Google Scholar 

  34. Zhang LY, Ting T, Chen HJ, Wei Q (2009) Mechanical and thermal properties of muscovite and density polyethylene-reinforced and-toughened polypropylene composites. J Wuhan Univ Technol (Mater Sci Edn) 24(4):581–587

    Article  CAS  Google Scholar 

  35. Yazdani H, Morshedian J, Khonakdar HA (2010) Effects of silane coupling agent and maleic anhydride-grafted polypropylene on the morphology and viscoelastic properties of polypropylene-mica composites. Polym Compos 27(5):491–496

    Article  Google Scholar 

  36. Yazdani H, Morshedian J, Khonakdar HA (2006) Effect of maleated polypropylene and impact modifiers on the morphology and mechanical properties of PP/mica composites. Polym Compos 27(6):614–620

    Article  CAS  Google Scholar 

  37. Cai L, Dou Q (2018) Effect of filler treatments on the crystallization, mechanical properties, morphologies and heat resistance of polypropylene/phlogopite composites. Polym Compos. https://doi.org/10.1002/pc.25023

    Article  Google Scholar 

  38. Li XJ, Hu KL, Ji MR, Huang YL, Zhou GE (2002) Calcium dicarboxylates nucleation of β-polypropylene. J Appl Polym Sci 86(3):633–638

    Article  CAS  Google Scholar 

  39. Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40(5):1219–1222

    Article  CAS  Google Scholar 

  40. Mamat A, Trochu TF, Sanschagrin B (1995) Analysis of shrinkage by dual kriging for filled and unfilled polypropylene molded parts. Polym Eng Sci 35(19):1511–1520

    Article  CAS  Google Scholar 

  41. Xanthos M (2005) Functional fillers for plastics. Wiley-VCH, Weinheim

    Book  Google Scholar 

  42. Binsbergen FL, Lange BGMD (1970) Heterogeneous nucleation in the crystallization of polyolefins: Part 2. Kinetics of crystallization of nucleated polypropylene. Polymer 11(6):309–332

    Article  CAS  Google Scholar 

  43. Dou Q (2008) A Comparison of the effects of calcium glutarate and pimelate on the formation of β crystalline form in isotactic poly(propylene). J Macromol Sci Part B Phys 47(1):127–138

    Article  CAS  Google Scholar 

  44. Dou Q (2007) Effect of metallic salts of pimelic acid and crystallization temperatures on the formation of β crystalline form in isotactic poly(propylene). J Macromol Sci Part B Phys 46(6):1063–1080

    Article  CAS  Google Scholar 

  45. Varga J, Stoll K, Menyhárd A, Horváth Z (2011) Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci 121(3):1469–1480

    Article  CAS  Google Scholar 

  46. Varga J (1986) Melting memory effect of the β-modification of polypropylene. J Therm Anal 31(1):165–172

    Article  CAS  Google Scholar 

  47. Li JX, Cheung WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Add Tech 3(2):151–156

    Article  CAS  Google Scholar 

  48. Beck HN, Ledbetter HD (1965) DTA study of heterogeneous nucleation of crystallization in polypropylene. J Appl Polym Sci 9(6):2131–2142

    Article  Google Scholar 

  49. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27(10):2557–2579. https://doi.org/10.1007/BF00540671

    Article  CAS  Google Scholar 

  50. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42(1):167–183

    Article  CAS  Google Scholar 

  51. Tjong SC, Shen JS, Li RKY (1996) Mechanical behavior of injection molded β-crystalline phase polypropylene. Polym Eng Sci 36(1):100–105

    Article  CAS  Google Scholar 

  52. Pukánszky B, Móczó J (2010) Morphology and properties of particulate filled polymers. Macromol Symp 214(1):115–134

    Article  Google Scholar 

  53. Pukánszky B, Belina K, Rockenbauer A, Maurer FHJ (1994) Effect of nucleation, filler anisotropy and orientation on the properties of PP composites. Composites 25(3):205–214

    Article  Google Scholar 

  54. Lu QC, Dou Q (2017) Investigation of the microstructures, properties, and toughening mechanism of polypropylene/calcium carbonate toughening masterbatch composites. J Appl Polym Sci 134(46):45515

    Article  Google Scholar 

  55. Kiss A, Fekete E, Pukánszky B (2007) Aggregation of CaCO3 particles in PP composites: effect of surface coating. Compos. Sci. Technol. 67(7–8):1574–1583

    Article  CAS  Google Scholar 

  56. Raab M, Kotek J, Baldrian J, Grellmann W (2015) Toughness profile in injection-molded polypropylene: the effect of the β-modification. J Appl Polym Sci 69(11):2255–2259

    Article  Google Scholar 

  57. Yang K, Yang Q, Li G, Sun Y, Feng D (2006) Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles. Polym Compos 27(4):443–450

    Article  CAS  Google Scholar 

  58. Shah V (2007) Handbook of plastics testing and failure analysis, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  59. Jancar J, Kalfus J, Balkova R (2011) On the differences in micro-deformation mechanism between isotactic polypropylene and β-nucleated isotactic polypropylene as revealed by the confocal laser scanning microscopy. Polym Eng Sci 51(12):2434–2438

    Article  CAS  Google Scholar 

  60. Yuan Q, Shah JS, Bertrand KJ, Misra RDK (2009) On processing and impact deformation behavior of high density polyethylene (HDPE)-calcium carbonate nanocomposites. Macromol Mater Eng 294(2):141–151

    Article  CAS  Google Scholar 

  61. Bai HW, Wang Y, Song B, Huang T, Han L (2009) Effects of nucleating agents on microstructure and fracture toughness of poly(propylene)/ethylene-propylene-diene terpolymer blends. J Polym Sci Part B Polym Phys 47(1):46–49

    Article  CAS  Google Scholar 

  62. Fujiyama M, Wakino T, Kawasaki Y (1988) Structure of skin layer in injection-molded polypropylene. J Appl Polym Sci 35:29–49

    Article  CAS  Google Scholar 

  63. Xavier SF (1990) Fracture propagation in particulate-filled polypropylene composites—Part 2 Influence of mica concentration. J Mater Sci 25(5):2420–2421. https://doi.org/10.1007/BF00638035

    Article  Google Scholar 

  64. Jarus D, Scheibelhoffer A, Hiltner A, Baer E (1996) The effect of “skin-core”morphology on the heat-deflection temperature of polypropylene. J Appl Polym Sci 60(2):209–219

    Article  CAS  Google Scholar 

  65. Karian HG (2003) Handbook of polypropylene and polypropylene composites, 2nd edn. Marcel Dekker, New York

    Book  Google Scholar 

  66. Chen D, Yang H (2010) Polypropylene/combinational inorganic filler micro-/nanocomposites: synergistic effects of micro-/nanoscale combinational inorganic fillers on their mechanical properties. J Appl Polym Sci 115(1):624–634

    Article  CAS  Google Scholar 

  67. Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. Plastics Design Library, New York

    Google Scholar 

  68. Shelesh-Nezhad K, Taghizadeh A (2007) Shrinkage behavior and mechanical performances of injection molded polypropylene/talc composites. Polym Eng Sci 47(12):2124–2128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Dou, Q. Investigation on the melting and crystallization behaviors, mechanical properties and morphologies of polypropylene/sericite composites. J Mater Sci 54, 3600–3618 (2019). https://doi.org/10.1007/s10853-018-3049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3049-y

Keywords

Navigation