Skip to main content
Log in

Synthesis and characterization of maghemite nanocrystals decorated multi-wall carbon nanotubes for methylene blue dye removal

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Maghemite nanocrystals decorated multi-wall carbon nanotubes (MWCNTs) magnetic and electronic properties enhanced nanocomposites are synthesized using infrared (IR) irradiation and diazonium chemistry. The present method is simple and very effective as it overcomes the problem faced in the past decade for the decoration of carbon nanotubes (CNTs) with maghemite nanoparticles. The resulting materials are characterized using different techniques such as XPS, TEM, PXRD, STEM, EDX, HRTEM, and UV–Vis spectrophotometry. Firstly, sodium hydroxide treatment leads to the purification of MWCNTs (p-MWCNTs). The p-MWCNTs functionalization with tricarboxylic aryl diazonium salts generated in situ (p-MWCNTs-D3) followed by its impregnation with iron (II) ethylenediammonium sulfate (p-MWCNTs-D3/IEDS) utilizing IR radiation is the key step in homogeneously impregnating functionalized MWCNTs. Calcination of p-MWCNTs-D3/IEDS at 500 °C under argon atmosphere results in a controlled decoration of p-MWCNTs with maghemite nanocrystals (p-MWCNTs/MC). A homogeneous distribution of maghemite nanocrystals (cubic crystal system) on MWCNTs is observed in the size range of 1–6 nm, with a Gaussian mean diameter of ∼ 1.9 nm. To illustrate the applications of p-MWCNTs/MC for the decontamination of pollutants in water, methylene blue (MB), a model pollutant, is used and the performances are compared with the unmodified MWCNTs, Fe2O3 nanopowder and a mixture of MWCNTs and Fe2O3 nanopowder (1:1). Successful integration of properties of both constituents (MWCNTs and maghemite nanocrystals) in the new nanocomposite with superior characteristics is proved. The present method is valid for large-scale preparations which also opens very interesting perspectives in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kroto H, Heath JR, O’Brien SC et al (1985) C 60: buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  3. Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709. https://doi.org/10.1038/359707a0

    Article  CAS  Google Scholar 

  4. Iijima S, Yudasaka M, Yamada R et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170. https://doi.org/10.1016/S0009-2614(99)00642-9

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306:666–669. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  6. Kumar S, Rani R, Dilbaghi N et al (2017) Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 46:158–196. https://doi.org/10.1039/C6CS00517A

    Article  CAS  Google Scholar 

  7. Wallar C, Luo D, Poon R, Zhitomirsky I (2017) Manganese dioxide – carbon nanotube composite electrodes with high active mass loading for electrochemical supercapacitors. J Mater Sci 52:3687–3696. https://doi.org/10.1007/s10853-016-0711-0

    Article  CAS  Google Scholar 

  8. Lee YT, Tsai PJ, Peterson VK et al (2016) A microstructural and neutron-diffraction study on the interactions between microwave-irradiated multiwalled carbon nanotubes and hydrogen. J Mater Sci 51:1308–1315. https://doi.org/10.1007/s10853-015-9448-4

    Article  CAS  Google Scholar 

  9. Wang H, Zhou H, Zhang W, Yao S (2018) Urea-assisted synthesis of amorphous molybdenum sulfide on P-doped carbon nanotubes for enhanced hydrogen evolution. J Mater Sci 53:8951–8962. https://doi.org/10.1007/s10853-018-2226-3

    Article  CAS  Google Scholar 

  10. Kumar U, Sikarwar S, Sonker RK, Yadav BC (2016) Carbon nanotube: synthesis and application in solar cell. J Inorg Organomet Polym Mater 26:1231–1242. https://doi.org/10.1007/s10904-016-0401-z

    Article  CAS  Google Scholar 

  11. Adewunmi AA, Ismail S, Sultan AS (2016) Carbon nanotubes (CNTs) nanocomposite hydrogels developed for various applications: a critical review. J Inorg Organomet Polym Mater 26:717–737. https://doi.org/10.1007/s10904-016-0379-6

    Article  CAS  Google Scholar 

  12. Morais PV, Jr VFG, Silva ACA et al (2017) Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. J Mater Sci 52:12314–12325. https://doi.org/10.1007/s10853-017-1369-y

    Article  CAS  Google Scholar 

  13. Zhang Y, Li K, Ji P et al (2017) Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries. J Mater Sci 52:3630–3641. https://doi.org/10.1007/s10853-016-0503-6

    Article  CAS  Google Scholar 

  14. Kouser R, Vashist A, Zafaryab M et al (2018) Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Mater Sci Eng, C 84:168–179. https://doi.org/10.1016/j.msec.2017.11.018

    Article  CAS  Google Scholar 

  15. Bhakta AK, Mascarenhas RJ, D’Souza OJ et al (2015) Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and l-tyrosine. Mater Sci Eng, C 57:328–337. https://doi.org/10.1016/j.msec.2015.08.003

    Article  CAS  Google Scholar 

  16. Naeimi A, Saeidi M, Baroumand N (2016) Carboxylated carbon nanotubes as an efficient and cost-effective adsorbent for sustainable removal of insecticide fenvalerate from contaminated solutions. Int Nano Lett 6:265–271. https://doi.org/10.1007/s40089-016-0193-8

    Article  CAS  Google Scholar 

  17. Lata S, Vikas (2017) Dispersibility of carbon nanotubes in organic solvents: do we really have predictive models? J Nanoparticle Res 19:211. https://doi.org/10.1007/s11051-017-3883-x

    Article  CAS  Google Scholar 

  18. Bhakta AK, Detriche S, Kumari S et al (2018) Multi-wall carbon nanotubes decorated with bismuth oxide nanocrystals using infrared irradiation and diazonium chemistry. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-018-0800-4

    Article  Google Scholar 

  19. Huber DL (2005) Synthesis, Properties, and Applications of Iron Nanoparticles. Small 1:482–501. https://doi.org/10.1002/smll.200500006

    Article  CAS  Google Scholar 

  20. Sahebian S, Zebarjad SM, Khaki JV, Lazzeri A (2016) The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method. Int Nano Lett 6:183–190. https://doi.org/10.1007/s40089-016-0185-8

    Article  Google Scholar 

  21. Heydari F, Afghahi SSS, Manteghian M, Taghizadeh MJ (2017) Nanosized amorphous (Co, Fe) oxide particles decorated PANI—CNT: facile synthesis, characterization, magnetic, electromagnetic properties and their application. Int Nano Lett 7:275–283. https://doi.org/10.1007/s40089-017-0223-1

    Article  CAS  Google Scholar 

  22. Bhakta AK, Mascarenhas RJ, Martis P et al (2018) Multi-wall carbon nanotubes decorated with barium oxide nanoparticles. Synth Catal Open Access. https://doi.org/10.4172/2574-0431.100019

    Article  Google Scholar 

  23. Shokrollahi H (2017) A review of the magnetic properties, synthesis methods and applications of maghemite. J Magn Magn Mater 426:74–81. https://doi.org/10.1016/j.jmmm.2016.11.033

    Article  CAS  Google Scholar 

  24. Kilinç E (2016) γ-Fe2O3magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: synthesis, characterization, analytical and biomedical application. J Magn Magn Mater 401:949–955. https://doi.org/10.1016/j.jmmm.2015.11.003

    Article  CAS  Google Scholar 

  25. Fallahiarezoudar E, Ahmadipourroudposht M, Idris A et al (2016) Characterization of maghemite (γ-Fe2O3)-loaded poly-l-lactic acid/thermoplastic polyurethane electrospun mats for soft tissue engineering. J Mater Sci 51:8361–8381. https://doi.org/10.1007/s10853-016-0087-1

    Article  CAS  Google Scholar 

  26. Shah RR, Davis TP, Glover AL et al (2015) Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J Magn Magn Mater 387:96–106. https://doi.org/10.1016/j.jmmm.2015.03.085

    Article  CAS  Google Scholar 

  27. Bagheban Shahri F, Niazi A (2015) Synthesis of modified maghemite nanoparticles and its application for removal of acridine orange from aqueous solutions by using box-behnken design. J Magn Magn Mater 396:318–326. https://doi.org/10.1016/j.jmmm.2015.08.054

    Article  CAS  Google Scholar 

  28. De Souza FG, Marins JA, Pinto JC et al (2010) Magnetic field sensor based on a maghemite/polyaniline hybrid material. J Mater Sci 45:5012–5021. https://doi.org/10.1007/s10853-010-4321-y

    Article  CAS  Google Scholar 

  29. Shokrollahi H (2013) Contrast agents for MRI. Mater Sci Eng, C 33:4485–4497. https://doi.org/10.1016/j.msec.2013.07.012

    Article  CAS  Google Scholar 

  30. Gatabi MP, Moghaddam HM, Ghorbani M (2016) Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study. J Nanoparticle Res 18:189. https://doi.org/10.1007/s11051-016-3487-x

    Article  CAS  Google Scholar 

  31. Kim IT, Nunnery GA, Jacob K et al (2010) Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 114:6944–6951. https://doi.org/10.1021/jp9118925

    Article  CAS  Google Scholar 

  32. Morales-Cid G, Fekete A, Simonet BM et al (2010) In situ synthesis of magnetic multiwalled carbon nanotube composites for the clean-up of (Fluoro)Quinolones from human plasma prior to ultrahigh pressure liquid chromatography analysis. Anal Chem 82:2743–2752. https://doi.org/10.1021/ac902631h

    Article  CAS  Google Scholar 

  33. Miyako E, Pichon BP, Menard-Moyon C et al (2016) Design, synthesis, characterization and properties of magnetic nanoparticle-nanocarbon hybrids. Carbon N Y 96:49–56. https://doi.org/10.1016/j.carbon.2015.09.045

    Article  CAS  Google Scholar 

  34. Xu P, Han XJ, Liu XR et al (2009) A study of the magnetic and electromagnetic properties of γ-Fe2O3-multiwalled carbon nanotubes (MWCNT) and Fe/Fe3C-MWCNT composites. Mater Chem Phys 114:556–560. https://doi.org/10.1016/j.matchemphys.2008.10.010

    Article  CAS  Google Scholar 

  35. Gatabi MP, Moghaddam HM, Ghorbani M (2016) Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method. J Mol Liq 216:117–125. https://doi.org/10.1016/j.molliq.2015.12.087

    Article  CAS  Google Scholar 

  36. Kilinç E (2016) γ-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: synthesis, characterization, analytical and biomedical application. J Magn Magn Mater 401:949–955. https://doi.org/10.1016/j.jmmm.2015.11.003

    Article  CAS  Google Scholar 

  37. Huiqun C, Meifang Z, Yaogang L (2006) Decoration of carbon nanotubes with iron oxide. J Solid State Chem 179:1208–1213. https://doi.org/10.1016/j.jssc.2005.12.040

    Article  CAS  Google Scholar 

  38. Tan F, Fan X, Zhang G, Zhang F (2007) Coating and filling of carbon nanotubes with homogeneous magnetic nanoparticles. Mater Lett 61:1805–1808. https://doi.org/10.1016/j.matlet.2006.07.163

    Article  CAS  Google Scholar 

  39. Fan X, Tan F, Zhang G, Zhang F (2007) A novel strategy to fabricate γ-Fe2O3-MWCNTs hybrids with selectively ferromagnetic or superparamagnetic properties. Mater Sci Eng, A 454–455:37–42. https://doi.org/10.1016/j.msea.2007.01.027

    Article  CAS  Google Scholar 

  40. Tsoufis T, Douvalis AP, Lekka CE et al (2013) Controlled preparation of carbon nanotube-iron oxide nanoparticle hybrid materials by a modified wet impregnation method. J Nanoparticle Res 15:1924. https://doi.org/10.1007/s11051-013-1924-7

    Article  Google Scholar 

  41. Tavakkoli M, Kallio T, Reynaud O et al (2016) Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. J Mater Chem A 4:5216–5222. https://doi.org/10.1039/C6TA01472K

    Article  CAS  Google Scholar 

  42. Cao Y (2014) Preparation and magnetic properties of a multi-walled carbon nanotube-iron oxide nanoparticle composite. Fullerenes Nanotub Carbon Nanostructures 23:623–626. https://doi.org/10.1080/1536383X.2014.944261

    Article  CAS  Google Scholar 

  43. Lee C-G, Kim S-B (2016) Removal of arsenic and selenium from aqueous solutions using magnetic iron oxide nanoparticle/multi-walled carbon nanotube adsorbents. Desalin Water Treat 57:28323–28339. https://doi.org/10.1080/19443994.2016.1185042

    Article  CAS  Google Scholar 

  44. Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40:4143–4166. https://doi.org/10.1039/c0cs00179a

    Article  CAS  Google Scholar 

  45. Bhakta AK, Detriche S, Martis P et al (2017) Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles. J Mater Sci 52:9648–9660. https://doi.org/10.1007/s10853-017-1100-z

    Article  CAS  Google Scholar 

  46. Chehimi MM (2012) Aryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science. Wiley-VCH Weinheim Germany. ISBN 978-3-527-32998-4

  47. Miyako E, Nagata H, Hirano K, Hirotsu T (2008) Carbon nanotube-polymer composite for light-driven microthermal control. Angew Chemie Int Ed 47:3610–3613. https://doi.org/10.1002/anie.200800296

    Article  CAS  Google Scholar 

  48. Martis P, Venugopal BR, Seffer J-F et al (2011) Infrared irradiation controlled decoration of multiwalled carbon nanotubes with copper/copper oxide nanocrystals. Acta Mater 59:5040–5047. https://doi.org/10.1016/j.actamat.2011.04.061

    Article  CAS  Google Scholar 

  49. Venugopal BR, Detriche S, Delhalle J, Mekhalif Z (2012) Effect of infrared irradiation on immobilization of ZnO nanocrystals on multiwalled carbon nanotubes. J Nanoparticle Res 14:1079. https://doi.org/10.1007/s11051-012-1079-y

    Article  CAS  Google Scholar 

  50. Khan AA, Kumar M, Khan K et al (2017) Photoinduced oxygen prompted iron – iron oxide catalyzed clock reaction: a mimic of the blue bottle experiment. New J Chem 41:6420–6426. https://doi.org/10.1039/C7NJ00761B

    Article  CAS  Google Scholar 

  51. Hassan W, Farooq U, Ahmad M et al (2017) Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arab J Chem 10:S1512–S1522. https://doi.org/10.1016/j.arabjc.2013.05.002

    Article  CAS  Google Scholar 

  52. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  53. Yao Y, Xu F, Chen M et al (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101:3040–3046. https://doi.org/10.1016/j.biortech.2009.12.042

    Article  CAS  Google Scholar 

  54. Wu P, Xie K, Xu X et al (2015) Multiwalled carbon nanotubes anchored with maghemite nanocrystals for high-performance lithium storage. Mater Res Bull 64:106–111. https://doi.org/10.1016/j.materresbull.2014.12.042

    Article  CAS  Google Scholar 

  55. Yan N, Zhou X, Li Y et al (2013) Fe2O3 nanoparticles wrapped in multi-walled carbon nanotubes with enhanced lithium storage capability. Sci Rep 3:1–6. https://doi.org/10.1038/srep03392

    Article  Google Scholar 

  56. De Sousa M, Martinez DST, Alves OL (2016) Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes. J Nanoparticle Res 18:143. https://doi.org/10.1007/s11051-016-3399-9

    Article  CAS  Google Scholar 

  57. Liu Q, Li M, Wang Z et al (2013) Improvement on the tensile performance of buckypaper using a novel dispersant and functionalized carbon nanotubes. Compos Part A 55:102–109. https://doi.org/10.1016/j.compositesa.2013.08.011

    Article  CAS  Google Scholar 

  58. Tardio S, Abel M, Carr RH et al (2015) Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS. J Vac Sci Technol, A 33:1–14. https://doi.org/10.1116/1.4927319

    Article  CAS  Google Scholar 

  59. Gu X, Sun Z, Wu S et al (2013) Surfactant-free hydrothermal synthesis of sub-10 nm γ-Fe2O3–polymer porous composites with high catalytic activity for reduction of nitroarenes. Chem Commun 49:10088–10090. https://doi.org/10.1039/c3cc44523b

    Article  CAS  Google Scholar 

  60. Zhang W, Stolojan V, Silva SRP, Wu CW (2014) Raman, EELS and XPS studies of maghemite decorated multi-walled carbon nanotubes. Spectrochim Acta Part A Mol Biomol Spectrosc 121:715–718. https://doi.org/10.1016/j.saa.2013.11.101

    Article  CAS  Google Scholar 

  61. Mohamed AA, Salmi Z, Dahoumane SA et al (2015) Functionalization of nanomaterials with aryldiazonium salts. Adv Colloid Interface Sci 225:16–36. https://doi.org/10.1016/j.cis.2015.07.011

    Article  CAS  Google Scholar 

  62. Mekki A, Ait-Touchente Z, Samanta S et al (2016) Polyaniline-wrapped ZnO nanorod composite films on diazonium-modified flexible plastic substrates. Macromol Chem Phys 217:1136–1148

    Article  CAS  Google Scholar 

  63. Blanch AJ, Lenehan CE, Quinton JS (2012) Dispersant effects in the selective reaction of aryl diazonium salts with single-walled carbon nanotubes in aqueous solution. J Phys Chem C 116:1709–1723

    Article  CAS  Google Scholar 

  64. Maho A, Detriche S, Fonder G et al (2014) Electrochemical co-deposition of phosphonate-modified carbon nanotubes and tantalum on nitinol. ChemElectroChem 1:896–902. https://doi.org/10.1002/celc.201300197

    Article  CAS  Google Scholar 

  65. Chen J, Hamon MA, Hu H et al (1998) Solution properties of single-walled carbon nanotubes. Science 80(282):95–98. https://doi.org/10.1126/science.282.5386.95

    Article  Google Scholar 

  66. Wang G, Ren W, Tan HR, Liu Y (2017) Carbon nanoparticle-modified multi-wall carbon nanotubes with fast adsorption kinetics for water treatment. Nanotechnology 28:1–6. https://doi.org/10.1088/1361-6528/aa542c

    Article  Google Scholar 

  67. Bahgat M, Ali Farghali A, El Rouby W et al (2013) Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite. Appl Nanosci 3:251–261. https://doi.org/10.1007/s13204-012-0127-3

    Article  CAS  Google Scholar 

  68. Wang P, Cao M, Wang C et al (2014) Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite. Appl Surf Sci 290:116–124. https://doi.org/10.1016/j.apsusc.2013.11.010

    Article  CAS  Google Scholar 

  69. Gong J-L, Wang B, Zeng G-M et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater J 164:1517–1522. https://doi.org/10.1016/j.jhazmat.2008.09.072

    Article  CAS  Google Scholar 

  70. Ai L, Zhang C, Liao F et al (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290. https://doi.org/10.1016/j.jhazmat.2011.10.041

    Article  CAS  Google Scholar 

  71. Qu S, Huang F, Yu S et al (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater J 160:643–647. https://doi.org/10.1016/j.jhazmat.2008.03.037

    Article  CAS  Google Scholar 

  72. Mohammed MI, Razak AAA, Al-Timimi DAH (2014) Modified multiwalled carbon nanotubes for treatment of some organic dyes in wastewater Adv Mater Sci Eng

  73. Chagovets VV, Kosevich MV, Stepanian SG et al (2012) Noncovalent interaction of methylene blue with carbon nanotubes: theoretical and mass spectrometry characterization. J Phys Chem C 116:20579–20590. https://doi.org/10.1021/jp306333c

    Article  CAS  Google Scholar 

  74. Siddiqui MTH, Nizamuddin S, Baloch HA et al (2018) Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0724-9

    Article  Google Scholar 

  75. Singh M, Ramanathan R, Mayes ELH et al (2018) One-pot synthesis of maghemite nanocrystals across aqueous and organic solvents for magnetic hyperthermia. Appl Mater Today 12:250–259. https://doi.org/10.1016/j.apmt.2018.06.003

    Article  Google Scholar 

Download references

Acknowledgements

Arvind K. Bhakta thanks the University of Namur for a CERUNA doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zineb Mekhalif.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakta, A.K., Kumari, S., Hussain, S. et al. Synthesis and characterization of maghemite nanocrystals decorated multi-wall carbon nanotubes for methylene blue dye removal. J Mater Sci 54, 200–216 (2019). https://doi.org/10.1007/s10853-018-2818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2818-y

Keywords

Navigation