Skip to main content

Advertisement

Log in

N-doped mesoporous carbon integrated on carbon cloth for flexible supercapacitors with remarkable performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitrogen (N)-doped carbon cloth (NCC) was obtained by carbonizing polypyrrole coated on the CC to improve the specific surface area and introduce nitrogen functional groups. The surface area of the NCC was 147 m2 g−1, which was 16.7 times that of CC (8.8 m2 g−1). X-ray photoelectron spectroscopy demonstrated that two types of N dopants (pyrrolic-N and quaternary-N) were successfully doped in the NCC. The NCC had a high specific capacitance of 1.2 F cm−2 at 8 mA cm−2 as determined using a three-electrode system in 1 M Na2SO4. The asymmetric supercapacitor used with the NCC as negative electrode exhibited an energy density of 2.43 mWh cm−3 at 208 mW cm−3 with a voltage window of 2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Huang L, Yao B, Sun J, Gao X, Wu J, Wan J, Li T, Hu Z, Zhou J (2017) Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J Mater Chem A 5:2897–2903

    Article  Google Scholar 

  2. Wang N, Sun B, Zhao P, Yao M, Hu W, Komarneni S (2018) Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem Eng J 345:31–38

    Article  Google Scholar 

  3. Zeng D, Dou Y, Li M, Zhou M, Li H, Jiang K, Yang F, Peng J (2018) Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J Mater Sci 53:8372–8384. https://doi.org/10.1007/s10853-018-2035-8

    Google Scholar 

  4. Huang L, Yao X, Yuan L, Yao B, Gao X, Wan J, Zhou P, Xu M, Wu J, Yu H, Hu Z, Li T, Li Y, Zhou J (2018) 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater 12:191–196

    Article  Google Scholar 

  5. Qiu Y, Cheng Z, Guo B, Fan H, Sun S, Wu T, Jin L, Fan L, Feng X (2015) Preparation of activated carbon paper through a simple method and application as a supercapacitor. J Mater Sci 50:1586–1593

    Article  Google Scholar 

  6. Zhang Z, Xiao F, Qian L, Xiao J, Wang S, Liu Y (2014) Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv Energy Mater 4:1400064

    Article  Google Scholar 

  7. Su X, Jiang S, Zheng G, Zheng X, Yang J, Liu Z (2018) High-performance supercapacitors based on porous activated carbons from cattail wool. J Mater Sci 53:9191–9205. https://doi.org/10.1007/s10853-018-2208-5

    Article  Google Scholar 

  8. Qu D, Wang L, Zheng D, Xiao L, Deng B, Qu D (2014) An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes. J Power Sources 269:129–135

    Article  Google Scholar 

  9. Xie D, Tang W, Wang Y, Xia X, Zhong Y, Zhou D, Wang D, Wang X, Tu J (2016) Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res 9:1618–1629

    Article  Google Scholar 

  10. Wang Y, Zhang Y, Zhong W, Qing X, Zhou Q, Liu Q, Wang W, Liu X, Li M, Wang D (2018) Flexible supercapacitor with high energy density prepared by GO-induced porous coral-like polypyrrole (PPy)/PET non-woven fabrics. J Mater Sci 53:8409–8419. https://doi.org/10.1007/s10853-018-2131-9

    Google Scholar 

  11. Zhang Z, Xiao F, Xiao J, Wang S (2015) Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3:11817–11823

    Article  Google Scholar 

  12. Jiang H, Lee P, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53

    Article  Google Scholar 

  13. Zhang Z, Chi K, Xiao F, Wang S (2015) Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J Mater Chem A 3:12828–12835

    Article  Google Scholar 

  14. Wang Z, Han Y, Zeng Y, Qie Y, Wang Y, Zheng D, Lu X, Tong Y (2016) Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. J Mater Chem A 4:5828–5833

    Article  Google Scholar 

  15. Liu Q, Wang B, Chen J, Li F, Liu K, Wang Y, Li M, Lu Z, Wang W, Wang D (2017) Facile synthesis of three-dimensional (3D) interconnecting polypyrrole (PPy) nanowires/nanofibrous textile composite electrode for high performance supercapacitors. Compos A Appl Sci Manuf 101:30–40

    Article  Google Scholar 

  16. Xiong X, Gordon W, Ding D, Chen D, Ben R, Zhao B, Wang Z, Liu M (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80

    Article  Google Scholar 

  17. Yang M, Seok B, Bong G (2015) Hierarchical core/shell structure of MnO2@ polyaniline composites grown on carbon fiber paper for application in pseudocapacitors. Phys Chem Chem Phys 17:29874–29879

    Article  Google Scholar 

  18. Zhang Z, Xiao F, Wang S (2015) Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3:11215–11223

    Article  Google Scholar 

  19. Hu Z, Xiao X, Jin H, Li T, Chen M, Liang Z, Guo Z, Li J, Wan J, Huang L, Zhang Y, Feng G, Zhou J (2017) Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat Commun 8:15630

    Article  Google Scholar 

  20. Sun P, Yi H, Peng T, Jing Y, Wang R, Wang H, Wang X (2017) Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance. J Power Sources 341:27–35

    Article  Google Scholar 

  21. Wang N, Yao M, Zhao P, Hu W, Komarneni S (2017) Remarkable electrochemical properties of novel LaNi0.5Co0.5O3/0.333Co3O4 hollow spheres with a mesoporous shell. J Mater Chem A 5:5838–5845

    Article  Google Scholar 

  22. Wang K, Xu M, Gu Y, Gu Z, Fan Q (2016) Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes. J Power Sources 332:180–186

    Article  Google Scholar 

  23. Zhang H, Qiu W, Zhang Y, Han Y, Yu M, Wang Z, Lu X, Tong Y (2016) Surface engineering of carbon fiber paper for efficient capacitive energy storage. J Mater Chem A 4:18639–18645

    Article  Google Scholar 

  24. Wang N, Zhao P, Liang K, Yao M, Yang Y, Hu W (2017) CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem Eng J 307:105–112

    Article  Google Scholar 

  25. Guo F, Xu R, Cui X, Zhang L, Wang K, Yao Y, Wei J (2016) High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J Mater Chem A 23:9311–9318

    Article  Google Scholar 

  26. Zhang Z, Liu S, Xiao J, Wang S (2016) Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. J Mater Chem A 4:9691–9699

    Article  Google Scholar 

  27. Long Q, Wei M, Zhao H, Qing G, Xiang L, Li X, Hu X, Zhang W, Hung Y (2012) Nitrogen‐doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050

    Article  Google Scholar 

  28. Zhu J, Xu Y, Zhang Y, Feng T, Wang J, Mao S, Xiong L (2016) Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon 107:638–645

    Article  Google Scholar 

  29. Liu X, Wang H, Cui Y, Xu X, Zhang H, Lu G, Shi J, Liu W, Chen S, Wang X (2018) High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. J Mater Sci 53:6763–6773. https://doi.org/10.1007/s10853-017-1982-9

    Article  Google Scholar 

  30. Wang W, Liu W, Zeng Y, Han Y, Yu M, Lu X, Tong Y (2015) A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv Mater 27:3572–3578

    Article  Google Scholar 

  31. Yu N, Guo K, Zhang W, Wang X, Zhu M (2017) Flexible high-energy asymmetric supercapacitors based on MnO@C composite nanosheet electrodes. J Mater Chem A 5:804–813

    Article  Google Scholar 

  32. Lei W, Han L, Xuan C, Lin R, Liu H, Xin H, Wang D (2016) Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. Electrochim Acta 210:130–137

    Article  Google Scholar 

  33. Wang S, Zhang J, Shang P, Li Y, Chen Z, Xu Q (2014) N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chem Commun 50:12091–12094

    Article  Google Scholar 

  34. Gueon D, Moon J, Sustain ACS (2017) MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. Chem Eng 5:2445–2453

    Google Scholar 

  35. Qin K, Liu E, Li J, Kang J, Shi C, He C, He F, Zhao N (2016) Free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv Energy Mater 6:1600755

    Article  Google Scholar 

  36. Xu X, Liu Y, Wang M, Zhu C, Lu T, Zhao R, Pan L (2016) Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochim Acta 193:88–95

    Article  Google Scholar 

  37. Yao M, Wang N, Hu W, Komarneni S (2018) Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction. Appl Catal B Environ 233:226–233

    Article  Google Scholar 

  38. Lei S, Liu Y, Fei L, Song R, Lu W, Shu L, Mak C, Wang Y, Huang H (2016) Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors. J Mater Chem A 4:14781–14788

    Article  Google Scholar 

  39. Wang L, Yang H, Liu X, Zeng R, Li M, Huang Y, Hu X (2016) Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew Chem 129:1125–1130

    Article  Google Scholar 

  40. Feng D, Song Y, Huang Z, Xu X, Liu X (2016) Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. J Power Sources 324:788–797

    Article  Google Scholar 

  41. Jian X, Yang H, Li J, Zhang E, Cao L, Liang Z (2017) Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode. Electrochim Acta 228:483–493

    Article  Google Scholar 

  42. Cao J, Huang T, Liu R, Xi X, Wu D (2017) Nitrogen-doped carbon coated stainless steel meshes for flexible supercapacitors. Electrochim Acta 230:265–270

    Article  Google Scholar 

  43. Ye D, Yu Y, Tang J, Liu L, Wu Y (2016) Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale 8:10406–10414

    Article  Google Scholar 

  44. Wang L, Yang H, Liu X, Zeng R, Li M, Huang Y, Hu X (2017) Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew Chem Int Edit 129:1125–1130

    Article  Google Scholar 

  45. Masaharu N, Shogo O, Koki K, Kyohei K, Hikaru A (2016) Direct growth of birnessite-type MnO2 on treated carbon cloth for a flexible asymmetric supercapacitor with excellent cycling stability. J Electrochem Soc 163:A2340–A2348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencheng Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, N., Zhao, P. et al. N-doped mesoporous carbon integrated on carbon cloth for flexible supercapacitors with remarkable performance. J Mater Sci 53, 14573–14585 (2018). https://doi.org/10.1007/s10853-018-2654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2654-0

Keywords

Navigation