Skip to main content

Advertisement

Log in

First principles calculations on the effect of interstitial oxygen on phase stability and β–α″ martensitic transformation in Ti–Nb alloys

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of oxygen on phase stability and β–α″ martensitic transformation in Ti–Nb alloys has been studied using first principles calculations. Three stable atomic configurations of Ti–Nb (Ti-12.5, 16.6, and 25 at.% Nb) systems, which can transform from β-phase to α″-phase without changing the local atomic position of Nb atoms, were first identified using the cluster expansion method. Phonon calculations indicated that these structures were stable. Next, the martensitic transformation behavior of Ti–Nb–O system was studied using these structures. We observed a significant lattice distortion around oxygen atoms occupying octahedral interstitial sites that resembles a bcc type of stacking. Our results conclusively revealed that while the oxygen interstitials can oppose the atomic shuffle required for martensitic transformation, they can also cooperatively stabilize the β-phase even at 1 at.% oxygen concentrations by inducing local elastic shear strains. Interestingly, the canceling of these fields can stabilize the β-phase by suppressing the β to α″ transformation which decreases the martensitic start temperature (Ms). Our study revealed that the reduction in Ms is higher at lower Nb concentration. The stabilization of β-phase increases with oxygen concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Hao YL, Li SJ, Sun SY, Zheng CY, Yang R (2007) Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater 3(2):277–286

    CAS  Google Scholar 

  2. Shabalovskaya S (1994) Shape memory and superelastic technologies. In: First International Conference, p 209

  3. Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S (2002) Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Mater Trans 43(12):2978–2983

    CAS  Google Scholar 

  4. Bönisch M, Calin M, Waitz T, Panigrahi A, Zehetbauer M, Gebert A, Skrotzki W, Eckert J (2013) Thermal stability and phase transformations of martensitic Ti–Nb alloys. Sci Technol Adv Mater 14(5):55004

    Google Scholar 

  5. Hao YL, Li SJ, Prima F, Yang R (2012) Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus. Scr Mater 67:487–490

    CAS  Google Scholar 

  6. All EBV, With I (2017) Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation. J Alloys Compd 700:155–158

    Google Scholar 

  7. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54(9):2419–2429

    CAS  Google Scholar 

  8. Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S (2005) Shape memory characteristics of Ti–22Nb–(2–8) Zr(at.%) biomedical alloys. Mater Sci Eng A 403(1–2):334–339

    Google Scholar 

  9. Hao YL, Li SJ, Sun SY, Yang R (2006) Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A 441(1–2):112–118

    Google Scholar 

  10. Kim HY, Sasaki T, Okutsu K, Kim JI, Inamura T, Hosoda H, Miyazaki S (2006) Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Mater 54(2):423–433

    CAS  Google Scholar 

  11. Masumoto K, Horiuchi Y, Inamura T, Hosoda H, Wakashima K, Kim HY, Miyazaki S (2006) Effects of Si addition on superelastic properties of Ti–Nb–Al biomedical shape memory alloys. Mater Sci Eng A 438–440:835–838

    Google Scholar 

  12. Nayak SK, Hung CJ, Sharma V, Alpay SP, Dongare AM, Brindley WJ, Hebert RJ (2018) Insight into point defects and impurities in titanium from first principles. npj Comput Mater 4(1):11

    Google Scholar 

  13. Il Kim J, Kim HY, Hosoda H, Miyazaki S (2005) Shape memory behavior of Ti–22Nb–(0.5–2.0) O (at%) biomedical alloys. Mater Trans 46(4):852–857

    Google Scholar 

  14. Nii Y, Arima TH, Kim HY, Miyazaki S (2010) Effect of randomness on ferroelastic transitions: disorder-induced hysteresis loop rounding in Ti–Nb–O martensitic alloy. Phys Rev B Condens Matter Mater Phys 82(21):1–7

    Google Scholar 

  15. Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S (2011) Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Mater 59(16):6208–6218

    CAS  Google Scholar 

  16. Tahara M, Inamura T, Kim HY, Miyazaki S, Hosoda H (2015) Role of oxygen atoms in α″ martensite of Ti-20 at.% Nb alloy. Scr Mater 112:15–18

    Google Scholar 

  17. Saito T (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300(5618):464–467

    CAS  Google Scholar 

  18. Tane M, Nakano T, Kuramoto S, Niinomi M, Takesue N, Nakajima H (2013) ω Transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater 61(1):139–150

    CAS  Google Scholar 

  19. Sun J, Yao Q, Xing H, Guo WY (2007) Elastic properties of β, α″ and ω metastable phases in Ti–Nb alloy from first-principles. J Phys Condens Matter 19(48):486215

    Google Scholar 

  20. Ojha A, Sehitoglu H (2016) Slip resistance of Ti-based high-temperature shape memory alloys. Shape Mem Superelasticity 2(1):50–61

    Google Scholar 

  21. Minami D (2016) Effect of alloying element X on transformation strains and phase stabilities between alpha double prime and beta Ti–Nb–X (X = Al, Sn, Zr, Ta) ternary alloys. Mater Trans 57(3):263–268

    CAS  Google Scholar 

  22. Niu JG, Ping DH, Ohno T, Geng WT (2014) Suppression effect of oxygen on the β to ω transformation in a β-type Ti alloy: insights from first-principles. Model Simul Mater Sci Eng 22(1):15007

    Google Scholar 

  23. Hennig RG, Trinkle DR, Bouchet J, Srinivasan SG, Albers RC, Wilkins JW (2005) Impurities block the alpha to omega martensitic transformation in titanium. Nat Mater 4(2):129–133

    CAS  Google Scholar 

  24. Niu JG, Geng WT (2014) Oxygen-induced lattice distortion in β–Ti3Nb and its suppression effect on β to α’’ transformation. Acta Mater 81:194–203

    CAS  Google Scholar 

  25. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    CAS  Google Scholar 

  27. Materials Design (2012) Medea version 2.10 (Angel Fire, NM Mater Des)

  28. Lerch D, Wieckhorst O, Hart GLW, Forcade RW, Müller S (2009) UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input. Model Simul Mater Sci Eng 17(5):55003

    Google Scholar 

  29. van de Walle A (2008) A complete representation of structure-property relationships in crystals. Nat Mater 7(6):455–458

    Google Scholar 

  30. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136(7):074103

    Google Scholar 

  31. Lazar P, Jahnátek M, Hafner J, Nagasako N, Asahi R, Blaas-Schenner C, Stöhr M, Podloucky R (2011) Temperature-induced martensitic phase transitions in gum-metal approximants: first-principles investigations for Ti3Nb. Phys Rev B Condens Matter Mater Phys 84(5):1–17

    Google Scholar 

  32. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5

    CAS  Google Scholar 

  33. Trinkle DR, Jones MD, Hennig RG, Rudin SP, Albers RC, Wilkins JW (2006) Empirical tight-binding model for titanium phase transformations. Phys Rev B Condens Matter Mater Phys 73(9):1–9

    Google Scholar 

  34. Souvatzis P, Eriksson O, Katsnelson MI, Rudin SP (2008) Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys Rev Lett 100(9):1–4

    Google Scholar 

  35. Souvatzis P, Arapan S, Eriksson O, Katsnelson M (2011) Temperature driven α to β phase-transformation in Ti, Zr and Hf from first principles theory combined with lattice dynamics. Condmat 66006(1):4

    Google Scholar 

  36. Yu L, Yin F, Ping D (2007) Natural mechanism of the broadened Snoek relaxation profile in ternary body-centered-cubic alloys. Phys Rev B Condens Matter Mater Phys 75(17):1–12

    Google Scholar 

  37. Wu HH, Wisesa P, Trinkle DR (2013) Oxygen diffusion in HCP metals. Phys Rev B 14307:1–15

    Google Scholar 

  38. Nowick AS, Berry BS (1972) Anelastic relaxation in crystaline solids. Academic, New York

    Google Scholar 

  39. Kim HY, Ohmatsu Y, Il Kim J, Hosoda H, Miyazaki S (2004) Mechanical properties and shape memory behavior of Ti–Mo–Ga alloys. Mater Trans 45(4):1090–1095

    CAS  Google Scholar 

  40. Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438–440:18–24

    Google Scholar 

  41. Tahara M, Kanaya T, Kim HY, Inamura T, Hosoda H, Miyazaki S (2014) Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy. Acta Mater 80:317–326

    CAS  Google Scholar 

  42. Duerig TW, Williams JC (1984) Overview: microstructure and properties of beta titanium alloys. In: Proceedings of the symposium on beta titanium alloys in the 80’s, TMS, Atlanta, GA, pp 16–67

  43. Ojha A, Sehitoglu H (2016) Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys. Shape Mem Superelasticity 2:180–195

    Google Scholar 

  44. Bonisch M, Calin M, Giebeler L, Helth A, Gebert A, Skrotzki W, Eckert J (2014) Composition-dependent magnitude of atomic shuffles in Ti–Nb martensites. J Appl Crystallogr 47(4):1374–1379

    Google Scholar 

  45. Yuan B, Yang B, Gao Y, Lai M, Chen XH, Zhu M (2016) Achieving ultra-high superelasticity and cyclic stability of biomedical Ti–11Nb–4O (at.%) alloys by controlling Nb and oxygen content. Mater Des 92:978–982

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF DEMREF program (Grant Number 1435611). The computations were done on Talon3 supercomputer at the University of North Texas and TACC Stampede2 at Texas Advanced Computing Center through XSEDE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salloom, R., Reith, D., Banerjee, R. et al. First principles calculations on the effect of interstitial oxygen on phase stability and β–α″ martensitic transformation in Ti–Nb alloys. J Mater Sci 53, 11473–11487 (2018). https://doi.org/10.1007/s10853-018-2381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2381-6

Keywords

Navigation