Skip to main content
Log in

Pressure-induced structure, electronic, thermodynamic and mechanical properties of Ti2AlNb orthorhombic phase by first-principles calculations

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Effects of pressure on lattice parameters, electronic, thermodynamic and mechanical properties of the fully ordered Ti2AlNb orthorhombic phase were studied using first-principles calculations based on density functional theory (DFT). The bonding nature for ordering orthorhombic Ti2AlNb was revealed quantitatively through the electronic structure analyzing. The external pressures play limited roles in the elastic anisotropy of the alloy due to the outstanding dynamical and mechanical stabilities under pressure. However, the shear modulus of O phase manifests anisotropic, where {010} shear planes are the easiest planes to cleave among the principal planes under all pressures. The heat capacities, volume expansions and thermal expansion coefficients were calculated using the quasi-harmonic approximation model based on the phonon dispersion curves. Meanwhile, the bulk modulus, Young’s modulus, shear modulus and the hardness are promptly enhanced under pressure. The predicted results give hints to design Ti2AlNb-based alloy as high-pressure applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang W, Zeng WD, Xue C, Liang XB, Zhang JW. Designed bimodal size lamellar O microstructures in Ti2AlNb based alloy: microstructural evolution, tensile and creep properties. Mater Sci Eng A. 2014;618(11):288.

    Google Scholar 

  2. Chen W, Li JW, Xu L, Lu B. Development of Ti2AlNb alloys: opportunities and challenges. Adv Mater Process. 2014;172(2):23.

    CAS  Google Scholar 

  3. Cui XY, Yang JL, Li QX, Xia SD, Wang CY. Electronic structure of Ti2AlNb (O phase). J Phys Condens Matter. 1999;11(32):6179.

    CAS  Google Scholar 

  4. Wu B, Zinkevich M, Aldinger F, Chu MY, Shen JY. Prediction of the ordering behaviours of the orthorhombic phase based on Ti2AlNb alloys by combining thermodynamic model with ab initio calculation. Intermetallics. 2008;16(1):42.

    CAS  Google Scholar 

  5. Pathak A, Singh AK. A first principles study of Ti2AlNb intermetallic. Solid State Commun. 2015;204(12):9.

    CAS  Google Scholar 

  6. Banerjee D, Gogia AK, Nand TK, Joshi VA. A new ordered orthorhombic phase in a Ti3Al–Nb alloy. Acta Metall. 1988;36(4):871.

    CAS  Google Scholar 

  7. Hu QM, Yang R, Xu DS, Hao YL, Li D. Geometric and electronic structure of Ti2AlX (X = V, Nb, or Ta). Phys Rev B. 2003;68(5):054102.

    Google Scholar 

  8. Ravi C, Vajeeston P, Mathijaya S, Asokamani R. Electronic structure, phase stability, and cohesive properties of Ti2XAl (X = Nb, V, Zr). Phys Rev B. 1999;60(23):15683.

    CAS  Google Scholar 

  9. Wu B, Shen JY, Chu MY, Shang SL, Zhang Z, Peng DL, Liu SQ. The ordering behaviour of the O phase in Ti2AlNb-based alloys. Intermetallics. 2002;10(10):979.

    CAS  Google Scholar 

  10. Feng AH, Li BB, Shen J. Recent advances on Ti2AlNb-based alloys. J Mater Metall. 2011;10(1):30.

    CAS  Google Scholar 

  11. Khadzhieva OG, Illarionov AG, Popov AA. Effect of aging on structure and properties of quenched alloy based on orthorhombic titanium aluminide Ti2AlNb. Phys Met Metallogr. 2014;115(1):12.

    Google Scholar 

  12. Wang CW, Zhao T, Wang GF, Gao J, Fang H. Superplastic forming and diffusion bonding of Ti–22Al–24Nb alloy. J Mater Process Technol. 2015;222(8):122.

    CAS  Google Scholar 

  13. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    CAS  Google Scholar 

  14. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1997;78(7):1396.

    CAS  Google Scholar 

  15. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.

    Google Scholar 

  16. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.

    CAS  Google Scholar 

  17. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integration. Phys Rev B. 1976;13(12):5188.

    Google Scholar 

  18. Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B. 2008;78(13):134106.

    Google Scholar 

  19. Sa BS, Zhou J, Sun ZM. First-principles investigation of mechanical and thermodynamic properties of the rare earth intermetallic YbAl3 under pressure. Intermetallics. 2012;22(22):92.

    CAS  Google Scholar 

  20. Music D, Houben A, Dronskowski R, Schneider JM. Ab initio study of ductility in M2AlC (M = Ti, V, Cr). Phys Rev B. 2007;75(17):174102.

    Google Scholar 

  21. Feng J, Xiao B, Wan CL, Qu ZX, Huang ZC, Chen JC, Zhou R, Pa W. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 2011;59(4):1742.

    CAS  Google Scholar 

  22. Anderson OL. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids. 1963;24(7):909.

    CAS  Google Scholar 

  23. Chu F, Mitchell TE, Majumdar B, Miracle D, Nandy TK, Banerjee D. Elastic properties of the O phase in Ti–Al–Nb alloys. Intermetallics. 1997;5(2):147.

    CAS  Google Scholar 

  24. Brugger K. Determination of third-order elastic coefficients in crystals. J Appl Phys. 1965;36(3):768.

    Google Scholar 

  25. Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B. 2007;76(5):054115.

    Google Scholar 

  26. Watt JP. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry. J Appl Phys. 1979;50(10):6290.

    CAS  Google Scholar 

  27. Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond Sect A. 1952;65(5):349.

    Google Scholar 

  28. Pugh SFXCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1954;45(367):823.

    CAS  Google Scholar 

  29. Xu M, Chen JW, Zeng XB. First principle calculation on mechanical properties of O phase Ti–22Al–Nb(27-x)Vx alloy. Chin J Rare Metals. 2010;34(6):6.

    Google Scholar 

  30. Lewandowski JJ, Wang WH, Greer AL. Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett. 2005;85(2):77.

    CAS  Google Scholar 

  31. Gao FM, He JL, Wu ED, Liu SM, Yu DL, Li DC, Zhang SY, Tian YJ. Hardness of covalent crystals. Phys Rev Lett. 2003;91(1):015502.

    Google Scholar 

  32. Šimůnek A, Vackář J. Hardness of covalent and ionic crystals: first-principle calculations. Phys Rev Lett. 2006;96(8):085501.

    Google Scholar 

  33. Li KY, Wang XT, Zhang FF, Xue DF. Electronegativity identification of novel superhard materials. Phys Rev Lett. 2008;100(23):235504.

    Google Scholar 

  34. Cheng HC, Yu CF, Chen WH. Physical, mechanical, thermodynamic and electronic characterization of Cu11In9 crystal using first-principles density functional theory calculation. Comput Mater Sci. 2014;81(2):146.

    CAS  Google Scholar 

  35. Yousef ES, Adawy AE, KheshKhany NE. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Commun. 2006;139(3):108.

    CAS  Google Scholar 

  36. Chen XQ, Niu H, Li D, Li YY. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 2011;19(9):1275.

    CAS  Google Scholar 

  37. Chung DH, Buessem WR, Vahldiek FW, Mersol SA. Anisotropy in Single Crystal Refractory Compounds. New York: Plenum Press; 1968. 217.

    Google Scholar 

  38. Feng J, Xiao B, Zhou R, Pan W, Clarke DR. Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Mater. 2012;60(8):3380.

    CAS  Google Scholar 

  39. Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett. 2008;101(5):055504.

    Google Scholar 

  40. Ravindran P, Fast L, Korzhavyl PA, Johansson B, Wills J, Eriksson O. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys. 1998;84(9):4891.

    CAS  Google Scholar 

  41. Zhang XY, Qin JQ, Ning JL, Sun XW, Li XT, Ma MZ, Li RP. First principle study of elastic and thermodynamic properties of FeB4 under high pressure. J Appl Phys. 2013;114(18):183517.

    Google Scholar 

  42. Nye JF. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford: Clarendon Press; 1957. 322.

    Google Scholar 

  43. Hu WC, Liu Y, Li DJ, Zeng XQ, Xu CS. First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf. Comput Mater Sci. 2014;83(2):27.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 50971043 and 51171046), the Research Fund for the Doctoral Program of Higher Education of China (No. 20133514110006), the Natural Science Foundation of Fujian Province, China (No. 2014J01176), and the Program for New Century Excellent Talents in University of Fujian Province, China (No. JA10013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, ZY., Hu, KM., Sa, BS. et al. Pressure-induced structure, electronic, thermodynamic and mechanical properties of Ti2AlNb orthorhombic phase by first-principles calculations. Rare Met. 40, 1–11 (2021). https://doi.org/10.1007/s12598-017-0915-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0915-8

Keywords

Navigation