Skip to main content
Log in

Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a “micro-nano” route

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present study demonstrates a mechanochemical “micro-nano” approach toward the future solar cell absorber material Cu2ZnSnS4 (CZTS) with up-scaling potential. For this purpose, synthetic copper sulfide CuS and tin sulfide SnS nanoparticles along with microsized zinc metal and elemental sulfur as solid precursors were utilized. These precursors were milled in a planetary ball mill in an argon atmosphere for a period of 1–240 min. Moreover, we compare it to a “micro” approach starting from the elements and maintaining the same milling conditions. The phase composition of reaction mixtures was analyzed by X-ray diffractometry. The final products of syntheses were further analyzed by means of scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis spectroscopy. The phase purity of the prepared materials was verified by confocal Raman microscopy. In both cases, a polydisperse system of a nearly stoichiometric Cu2ZnSnS4 phase was readily obtained after 60 min of milling with only traces of unreacted Cu2−xS phases. Based on the results, we conclude there is no definite difference in reaction speed. However, the crystallite size and optical properties of the prepared CZTS samples slightly differ when various precursors are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Polman A (2016) Photovoltaic materials: present efficiencies and future challenges. Science 352:307–316. https://doi.org/10.1126/science.aad4424

    Article  Google Scholar 

  2. Green MA, Emery K, Hishikawa Y et al (2017) Solar cell efficiency tables (version 49). Prog Photovoltaics Res Appl 25:3–13. https://doi.org/10.1002/pip.2855

    Article  Google Scholar 

  3. Wang W, Winkler MT, Gunawan O et al (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater 4:1–5. https://doi.org/10.1002/aenm.201301465

    Google Scholar 

  4. Sun K, Yan C, Liu F et al (2016) Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1−xCdxS Buffer Layer. Adv Energy Mater 6:1600046. https://doi.org/10.1002/aenm.201600046

    Article  Google Scholar 

  5. Washio T, Shinji T, Tajima S et al (2012) 6% Efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J Mater Chem 22:4021. https://doi.org/10.1039/c2jm16454j

    Article  Google Scholar 

  6. Ma R, Yang F, Li S et al (2016) Fabrication of Cu2ZnSn(S, Se)4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes. Appl Surf Sci 368:8–15. https://doi.org/10.1016/j.apsusc.2016.01.242

    Article  Google Scholar 

  7. Bae SH, Zhao H, Hsieh YT et al (2016) Printable solar cells from advanced solution-processible materials. Chem 1:197–219

    Article  Google Scholar 

  8. Das S, Mandal KC, Bhattacharya RN (2015) Earth-abundant Cu2ZnSn(S, Se)4 (CZTSSe) solar cells. Semicond Mater Solar Photovol Cells 218:25–74

    Article  Google Scholar 

  9. Delbos S (2012) Kësterite thin films for photovoltaic: a review. EPJ Photovoltaics 3:35004. https://doi.org/10.1051/epjpv/2012008

    Article  Google Scholar 

  10. Muska K, Kauk M, Altosaar M et al (2011) Synthesis of Cu2ZnSnS4 monograin powders with different compositions. Energy Proc 10:203–207

    Article  Google Scholar 

  11. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  12. Song X, Ji X, Li M et al (2014) A review on development prospect of CZTS based thin film solar cells. Int J Photoenergy 2014:1–11

    Article  Google Scholar 

  13. Katagiri H, Jimbo K, Yamada S et al (2008) Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl Phys Express 1:0412011–0412012. https://doi.org/10.1143/APEX.1.041201

    Article  Google Scholar 

  14. Moholkar AV, Shinde SS, Agawane GL et al (2012) Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: an attempt to improve the efficiency. J Alloys Compd 544:145–151. https://doi.org/10.1016/j.jallcom.2012.07.108

    Article  Google Scholar 

  15. Wang K, Gunawan O, Todorov T et al (2010) Thermally evaporated Cu2ZnSnS4 solar cells. Appl Phys Lett 97:143508. https://doi.org/10.1063/1.3499284

    Article  Google Scholar 

  16. Sani R, Manivannan R, Victoria SN (2017) One step electrochemical deposition of CZTS for solar cell applications. Chalcogenide Lett 14:165–170

    Google Scholar 

  17. Todorov T, Mitzi DB (2010) Direct liquid coating of chalcopyrite light-absorbing layers for photovoltaic devices. Eur J Inorg Chem 2010:17–28

    Article  Google Scholar 

  18. Wang Y, Gong H (2011) Cu2ZnSnS4 synthesized through a green and economic process. J Alloys Compd 509:9627–9630. https://doi.org/10.1016/j.jallcom.2011.07.041

    Article  Google Scholar 

  19. Shyju TS, Anandhi S, Suriakarthick R et al (2015) Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications. J Solid State Chem 227:165–177. https://doi.org/10.1016/j.jssc.2015.03.033

    Article  Google Scholar 

  20. Pareek D, Balasubramaniam KR, Sharma P (2015) Synthesis and characterization of bulk Cu2ZnSnX4 (X: S, Se) via thermodynamically supported mechano-chemical process. Mater Charact 103:42–49. https://doi.org/10.1016/j.matchar.2015.03.014

    Article  Google Scholar 

  21. Park B-I, Hwang Y, Lee SY et al (2014) Solvent-free synthesis of Cu2ZnSnS4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells. Nanoscale 6:11703–11711. https://doi.org/10.1039/C4NR02564D

    Article  Google Scholar 

  22. Pareek D, Balasubramaniam KR, Sharma P (2017) Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J Mater Sci Mater Electron 28:1199–1210. https://doi.org/10.1007/s10854-016-5646-3

    Article  Google Scholar 

  23. Ritscher A, Schlosser M, Pfitzner A, Lerch M (2016) Study of the mechanochemical process to crystalline Cu2ZnSnS4 powder. Mater Res Bull 84:162–167. https://doi.org/10.1016/j.materresbull.2016.08.006

    Article  Google Scholar 

  24. Quennet M, Ritscher A, Lerch M, Paulus B (2017) The order-disorder transition in Cu2ZnSnS4: a theoretical and experimental study. J Solid State Chem 250:140–144. https://doi.org/10.1016/j.jssc.2017.03.018

    Article  Google Scholar 

  25. Zhou Z, Wang Y, Xu D, Zhang Y (2010) Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Sol Energy Mater Sol Cells 94:2042–2045. https://doi.org/10.1016/j.solmat.2010.06.010

    Article  Google Scholar 

  26. Mokurala K, Bhargava P, Mallick S (2014) Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors. Mater Chem Phys 147:371–374. https://doi.org/10.1016/j.matchemphys.2014.06.049

    Article  Google Scholar 

  27. Pani B, Pillai S, Singh UP (2016) Kesterite based thin film absorber layers from ball milled precursors. J Mater Sci Mater Electron 27:12412–12417. https://doi.org/10.1007/s10854-016-5205-y

    Article  Google Scholar 

  28. Guan P-W, Shang S-L, Lindwall G et al (2017) Phase stability of the Cu-Sn-S system and optimal growth conditions for earth-abundant Cu2SnS3 solar materials. Sol Energy 155:745–757. https://doi.org/10.1016/j.solener.2017.07.017

    Article  Google Scholar 

  29. Liu CQ, Wen B, Wang N et al (2017) Phase evolution and sintering behaviors of Cu2ZnSnS4 powders synthesized by mechanochemical process with different milling parameters. J Alloys Compd 708:428–436. https://doi.org/10.1016/j.jallcom.2017.03.008

    Article  Google Scholar 

  30. Baryshev SV, Thimsen E (2015) Enthalpy of formation for Cu-Zn-Sn-S (CZTS) calculated from surface binding energies experimentally measured by ion sputtering. Chem Mater 27:2294–2298. https://doi.org/10.1021/cm504749d

    Article  Google Scholar 

  31. Baláž M, Zorkovská A, Urakaev F et al (2016) Ultrafast mechanochemical synthesis of copper sulfides. RSC Adv 6:87836–87842. https://doi.org/10.1039/C6RA20588G

    Article  Google Scholar 

  32. Rodriguez-Carvajal J (2003) FullProf suite. LLB Sacley LCSIM Rennes, Fr

    Google Scholar 

  33. (PDF) S (JCPDS) PDF (2004) Powder Diffraction File (PDF)

  34. Hall SR, Szymanski JT, Stewart JM (1978) Kesterite, Cu2(Zn, Fe)SnS4 and stannite Cu2(Fe, Zn)SnS4, structurally similar but distinct minerals. Can Mineral 16:131–137

    Google Scholar 

  35. Valakh MY, Kolomys OF, Ponomaryov SS et al (2013) Raman scattering and disorder effect in Cu2ZnSnS4. Phys Status Solidi - Rapid Res Lett 7:258–261. https://doi.org/10.1002/pssr.201307073

    Article  Google Scholar 

  36. Fontané X, Izquierdo-Roca V, Saucedo E et al (2012) Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe, Zn)SnS4. J Alloys Compd 539:190–194. https://doi.org/10.1016/j.jallcom.2012.06.042

    Article  Google Scholar 

  37. Lund EA, Du H, Hlaing Oo WM et al (2014) Investigation of combinatorial coevaporated thin film Cu2ZnSnS4 (II): beneficial cation arrangement in Cu-rich growth. J Appl Phys 115:173503. https://doi.org/10.1063/1.4871665

    Article  Google Scholar 

  38. Fontań X, Calvo-Barrio L, Izquierdo-Roca V et al (2011) In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2 ZnSnS4 layers for solar cell applications. Appl Phys Lett 98:2011–2014. https://doi.org/10.1063/1.3587614

    Google Scholar 

  39. Tao J, Liu J, Chen L et al (2016) 7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chem 18:550–557. https://doi.org/10.1039/C5GC02057C

    Article  Google Scholar 

  40. Baláž P, Baláž M, Zorkovská A et al (2017) Kinetics of solid-state synthesis of quaternary Cu2FeSnS4 (stannite) nanocrystals for solar energy applications. Acta Phys Pol A 131:1153–1155. https://doi.org/10.12693/APhysPolA.131.1153

    Article  Google Scholar 

  41. Baláž P (2008) Mechanochemistry in Nanoscience and Minerals Engineering. Springer, Berlin

    Google Scholar 

  42. Li Y, Guo H, Wang X et al (2016) Suppression of charge recombination by application of Cu2ZnSnS4–graphene counter electrode to thin dye-sensitized solar cells. Sci Bull 61:1221–1230. https://doi.org/10.1007/s11434-016-1120-0

    Article  Google Scholar 

  43. Chang ZX, Chong RF, Meng YN et al (2015) High temperature recrystallization of kersterite Cu2ZnSnS4 towards enhanced photocatalytic H2 evolution. Int J Hydrogen Energy 40:13456–13462. https://doi.org/10.1016/j.ijhydene.2015.08.032

    Article  Google Scholar 

  44. Malerba C, Biccari F, Ricardo CLA et al (2014) CZTS stoichiometry effects on the band gap energy. J Alloys Compd 582:528–534. https://doi.org/10.1016/j.jallcom.2013.07.199

    Article  Google Scholar 

  45. Shibuya T, Goto Y, Kamihara Y et al (2014) From kesterite to stannite photovoltaics: stability and band gaps of the Cu2(Zn, Fe)SnS4 alloy. Appl Phys Lett 104:021912. https://doi.org/10.1063/1.4862030

    Article  Google Scholar 

  46. Viezbicke BD, Patel S, Davis BE, Birnie DP (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi 252:1700–1710. https://doi.org/10.1002/pssb.201552007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by projects of the Slovak research and development agency APVV (VV-0103-14) and the Slovak grant agency VEGA (2/0044/18, 2/0065/18). The support of the European project COST (OC-2015-1-19345) and the APVV (VV-15-0641), VEGA 2/0010/15 projects is also acknowledged. The work was done during implementation of the projects ITMS 26240220047 (50%) and ITMS 26240220028 (25%) supported by the Research and Development Operational Program funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Hegedüs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegedüs, M., Baláž, P., Baláž, M. et al. Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a “micro-nano” route. J Mater Sci 53, 13617–13630 (2018). https://doi.org/10.1007/s10853-018-2228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2228-1

Keywords

Navigation