Skip to main content

Earth-Abundant Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells

  • Chapter
  • First Online:
Semiconductor Materials for Solar Photovoltaic Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 218))

Abstract

In recent years, copper (Cu)-based quaternary kesterite compounds—Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4(CZTSe), and mixed chalcogenide Cu2ZnSn(SxSe1−x)4 (CZTSSe) have emerged as the potential alternative to the existing CIGS and CdTe absorbers in thin film solar cells. Comprising of earth-abundant, inexpensive, and environmentally benign consituent elements CZTS(Se) is an excellent choice for thin film photovoltaic absorber with tunable direct bandgap (1.0–1.5 eV), large optical absorption coefficient (>104 cm−1), and p-type conductivity. This chapter presents an overview of the various vacuum and non-vacuum based techniques employed for the preparation of CZTS(Se) absorber layer and discuss the physical properties of the material, defect physics, and photovoltaic performances of high-efficiency solar cells achieved following various absorber preparation routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 42). Prog. Photovoltaics Res. Appl. 21, 827–837 (2013)

    Article  Google Scholar 

  2. Green, M.A.: Estimates of Te and In prices from direct mining of known ores. Prog. Photovoltaics Res. Appl. 17, 347–359 (2009)

    Article  Google Scholar 

  3. Tao, C.S., Jiang, J., Tao, M.: Natural resource limitations to terawatt-scale solar cells. Sol. Energy Mater. Sol. Cells 95, 3176–3180 (2011)

    Article  Google Scholar 

  4. Feltrin, A., Freundlich, A.: Material considerations for terawatt level deployment of photovoltaics. Renew. Energy 33, 180–185 (2008)

    Article  Google Scholar 

  5. Zuser, A., Rechberger, H.: Considerations of resource availability in technology development strategies: the case study of photovoltaics. Resour. Conserv. Recycl. 56, 56–65 (2011)

    Article  Google Scholar 

  6. Fthenakis, V.: Sustainability of photovoltaics: the case for thin-film solar cells. Renew. Sustain. Energy Rev. 13, 2746–2750 (2009)

    Article  Google Scholar 

  7. Wadia, C., Alivisatos, A.P., Kammen, D.M.: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072–2077 (2009)

    Article  ADS  Google Scholar 

  8. Candelisea, C., Speirsa, J.F., Grossa, R.J.K.: Materials availability for thin film (TF) PV technologies development: a real concern? Renew. Sustain. Energy Rev. 15, 4972–4981 (2012)

    Article  Google Scholar 

  9. Green, M.A.: Consolidation of thin-film photovoltaic technology: the coming decade of opportunity. Prog. Photovoltaics Res. Appl. 14, 383–392 (2006)

    Article  ADS  Google Scholar 

  10. U.S. Department of Energy, Critical Materials Strategy, (2010)

    Google Scholar 

  11. European Commission, Critical Raw Materials for the EU, (2010)

    Google Scholar 

  12. O’Neill, B.: Indium market forces, a commercial perspective. In: Photovoltaic specialists conference (PVSC), 35th IEEE, pp. 000556–000559 (2010)

    Google Scholar 

  13. Fthenakis, V.M., Moskowitz, P.D.: Thin-film photovoltaic cells: health and environmental issues in their manufacture use and disposal. Prog. Photovoltaics Res. Appl. 3, 295–306 (1995)

    Article  Google Scholar 

  14. Repins, I., Beall, C., Vora, N., DeHart, C., Kuciauskas, D., Dippo, P., To, B., Mann, J., Hsu, W.-C., Goodrich, A., Noufi, R.: Co-evaporated Cu2ZnSnSe4 films and devices. Sol. Energy Mater. Sol. Cells 101, 154–159 (2012)

    Article  Google Scholar 

  15. Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., Todorov, T.K., Mitzi, D.B.: Low band gap liquid-processed CZTSe solar cell with 10.1 % efficiency. Energy Environ. Sci. 5, 7060–7065 (2012)

    Article  Google Scholar 

  16. Olekseyuk, I.D., Gulay, L.D., Dydchak, I.V., Piskach, L.V., Parasyuk, O.V., Marchuk, O.V.: Single crystal preparation and crystal structure of the Cu2Zn/Cd, Hg/SnSe4 compounds. J. Alloy. Compd. 340, 141–145 (2002)

    Article  Google Scholar 

  17. Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J., Bojarczuk, N.A., Mitzi, D., Guha, S.: Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97, 143508 (2010)

    Article  ADS  Google Scholar 

  18. Guo, Q., Ford, G.M., Yang, W.-C., Walker, B.C., Stach, E.A., Hillhouse, H.W., Agrawal, R.: Fabrication of 7.2 % efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132, 17384–17386 (2010)

    Article  Google Scholar 

  19. Willoughby, A.: Solar Cell Materials: Developing Technologies, Wiley Series in Materials for Electronic & Optoelectronic Applications, pp. 186. Wiley, Chichester (2014)

    Google Scholar 

  20. http://www.webelements.com/

  21. U.S. geological survey, http://minerals.usgs.gov/minerals/pubs/commodity/

  22. http://www.metalprices.com/

  23. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  24. Todorov, T.K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., Mitzi, D.B.: Beyond 11 % efficiency: characteristics of state-of-the-Art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater. 3, 34–38 (2013)

    Article  Google Scholar 

  25. Bernardini, G.P., Borrini, D., Caneschi, A., Di Benedetto, F., Gatteschi, D., Ristori, D., Romanelli, M.: EPR and SQUID magnetometry study of Cu2FeSnS4 (stannite) and Cu2ZnSnS4 (kesterite). Phys. Chem. Miner. 27, 453–461 (2000)

    Article  ADS  Google Scholar 

  26. Hall, S.R., Szymanski, J.T., Stewart, J.M.: Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals. Can. Mineral. 16, 131–137 (1978)

    Google Scholar 

  27. Brockway, L.O.: The crystal structure of stannite Cu2FeSnS4, Zeitschrift für Kristallographie—Crystalline Materials, 89, 434–441 (1934)

    Google Scholar 

  28. Bonazzi, P., Bindi, L., Bernardini, G.P., Menchetti, S.: A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite—kesterite series, Cu2FeSnS4—Cu2ZnSnS4. Can. Mineral. 41, 639–647 (2003)

    Article  Google Scholar 

  29. Schorr, S.: Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films 515, 5985–5991 (2007)

    Article  ADS  Google Scholar 

  30. Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., Guha, S.: The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011)

    Article  Google Scholar 

  31. Schorr, S.: The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 95, 1482–1488 (2011)

    Article  ADS  Google Scholar 

  32. Catlow, C.R.A., Guo, Z.X., Miskufova, M., Shevlin, S.A., Smith, A.G.H., Sokol, A.A., Walsh, A., Wilson, D.J., Woodley, S.M.: Advances in computational studies of energy materials. Philos. Trans. Roy. Soc. A 368, 3379–3456 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Persson, C.: Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710 (2010)

    Article  ADS  Google Scholar 

  34. Chen, S., Gong, X.G., Walsh, A., Wei, S.-H.: Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl. Phys. Lett. 94, 041903 (2009)

    Article  ADS  Google Scholar 

  35. Paier, J., Asahi, R., Nagoya, A., Kresse, G.: Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study. Phys. Rev. B 79, 115–126 (2009)

    Article  Google Scholar 

  36. Walsh, A., Chen, S., Gong, X.G., Wei, S.H.: Crystal structure and defect reactions in the kesterite solar cell absorber Cu2ZnSnS4 (CZTS): theoretical insights. AIP Conf. Proc. 1399, 63 (2011)

    Article  ADS  Google Scholar 

  37. Walsh, A., Wei, S.H., Chen, S.Y., Gong, X.G.: Design of quaternary chalcogenide photovoltaic absorbers through cation mutation. In: 34th IEEE Photovoltaic Specialists Conference, 1–3, pp. 1803–1806 (2009)

    Google Scholar 

  38. Walsh, A., Chen, S., Wei, S., Gong, X.: Kesterite thin film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400–409 (2012)

    Article  Google Scholar 

  39. Zhang, Y., Sun, X., Zhang, P., Yuan, X., Huang, F., Zhang, W.: Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. J. Appl. Phys. 111, 063709 (2012)

    Article  ADS  Google Scholar 

  40. Raulot, J.M., Domain, C., Guillemoles, J.F.: Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application. J. Phys. Chem. Solids 66, 2019–2023 (2005)

    Article  ADS  Google Scholar 

  41. Nozaki, H., Fukano, T., Ohta, S., Seno, Y., Katagiri, H., Jimbo, K.: Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion. J. Alloy. Compd. 524, 22–25 (2012)

    Article  Google Scholar 

  42. Siebentritt, S., Schorr, S.: Kesterites—a challenging material for solar cells. Prog. Photovoltaics Res. Appl. 20, 512–519 (2012)

    Article  Google Scholar 

  43. Chen, S., Gong, X.G., Walsh, A., Wei, S.H.: Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II–VI and I–III–VI2 compounds. Phys. Rev. B 79, 165211 (2009)

    Article  ADS  Google Scholar 

  44. Oleksyuk, I.D., Dudchar, I.V., Piskach, L.V.: Phase equilibria in the Cu2S–ZnS–SnS2 system. J. Alloy. Compd. 368, 135–143 (2004)

    Article  Google Scholar 

  45. Dudchak, I.V., Piskach, L.V.: Phase equilibria in the Cu2SnSe3–SnSe2–ZnSe system. J. Alloy. Compd. 351, 145–150 (2003)

    Article  Google Scholar 

  46. Das, S., Krishna, R.M., Ma, S., Mandal, K.C.: Single phase polycrystalline Cu2ZnSnS4 grown by vertical gradient freeze technique. J. Cryst. Growth 381, 148–152 (2013)

    Article  ADS  Google Scholar 

  47. Das, S., Mandal, K.C.: Cu2ZnSnSe4 photovoltaic absorber grown by vertical gradient freeze technique. Jpn. J. Appl. Phys. 52, 125502 (2013)

    Article  ADS  Google Scholar 

  48. Nagoya, A., Asahi, R., Wahl, R., Kresse, G.: Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material. Phys. Rev. B 81, 113202 (2010)

    Article  ADS  Google Scholar 

  49. Chen, S.Y., Gong, X.G., Walsh, A., Wei, S.H.: Appl. Phys. Lett. 96, 021902 (2010)

    Article  ADS  Google Scholar 

  50. Dale, P.J., Hoenes, K., Scragg, J., Siebentritt, S.: A review of the challenges facing kesterite based thin film solar cells. In: Photovoltaic Specialists Conference (PVSC), 34th IEEE, pp. 002080–002085 (2009)

    Google Scholar 

  51. Maeda, T., Nakamura, S., Wada, T.: First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4. Thin Solid Films 519, 7513–7516 (2011)

    Article  ADS  Google Scholar 

  52. Gödecke, T., Haalboom, T., Ernst, F.: Phase equilbiria of Cu–In–Se. I. Stable states and non-equilibrium states of the In2Se3–Cu2Se subsystem. Zeitschrift für Metallkunde, 91, 622–634 (2000)

    Google Scholar 

  53. Chen, S., Yang, J.-H., Gong, X.G., Walsh, A., Wei, S.-H.: Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81, 245204 (2010)

    Article  ADS  Google Scholar 

  54. Persson, C., Lany, S., Zhao, Y.-J., Zunger, A.: n-type doping of CuInSe2 and CuGaSe2. Phys. Rev. B 72, 035211 (2005)

    Article  ADS  Google Scholar 

  55. Maeda, T., Nakamura, S., Wada, T.: First principles calculations of defect formation in in-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4. Jpn. J. Appl. Phys. 50, 04DP07 (2011)

    Google Scholar 

  56. Redinger, A., Berg, D.M., Dale, P.J., Djemour, R., Gütay, L., Eisenbarth, T., Valle, N., Siebentritt, S.: Route toward high-efficiency single-phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review. IEEE J. Photovoltaics 1, 200–206 (2011)

    Google Scholar 

  57. Redinger, A., Hönes, K., Fontané, X., Izquierdo-Roca, V., Saucedo, E., Valle, N., Pérez-Rodríguez, A., Siebentritt, S.: Detection of a sZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films. Appl. Phys. Lett. 98, 101907 (2011)

    Google Scholar 

  58. Bär, M., Schubert, B.-A., Marsen, B., Krause, S., Pookpanratana, S., Unold, T., Weinhardt, L., Heske, C., Schock, H.-W.: Impact of KCN etching on the chemical and electronic surface structure of Cu2ZnSnS4 thin film solar cell absorbers. Appl. Phys. Lett. 99, 152111 (2011)

    Article  ADS  Google Scholar 

  59. Katagiri, H., Jimbo, K., Yamada, S., Kamimura, T., Maw, W.S., Fukano, T., Ito, T., Motohiro, T.: Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Exp. 1, 041201 (2008)

    Article  ADS  Google Scholar 

  60. Timmo, K., Altosaar, M., Raudoja, J., Grossberg, M., Danilson, M., Volobujeva, O., Mellikov, E.: Chemical etching of Cu2ZnSn(S,Se)4 monograin powder. In: Photovoltaic Specialists Conference (PVSC), 35th IEEE, pp. 001982–001985 (2010)

    Google Scholar 

  61. Fairbrother, A., García-Hemme, E., Izquierdo-Roca, V., Fontané, X., Pulgarín-Agudelo, F.A., Vigil-Galán, O., Pérez-Rodríguez, A., Saucedo, E.: Development of a selective chemical etch to improve the conversion efficiency of Zn-Rich Cu2ZnSnS4 solar cells. J. Am. Chem. Soc. 134, 8018–8021 (2012)

    Article  Google Scholar 

  62. Biswas, K., Lany, S., Zunger, A.: The electronic consequences of multivalent elements in inorganic solar absorbers: multivalency of Sn in Cu2ZnSnS4. Appl. Phys. Lett. 96, 201902 (2010)

    Article  ADS  Google Scholar 

  63. Siebentritt, S., Igalson, M., Persson, C., Lany, S.: The electronic structure of chalcopyrites—bands, point defects and grain boundaries. Prog. Photovoltaics Res. Appl. 18, 390–410 (2010)

    Article  Google Scholar 

  64. Nagoya, A., Asahi, R., Kresse, G.: First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications. J. Phys. Condens. Matter 23, 404203 (2011)

    Google Scholar 

  65. Chen, S., Walsh, A., Gong, X.-G., Wei, S.-H.: Classification of lattice defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013)

    Article  Google Scholar 

  66. Zhai, Y.-T., Chen, S., Yang, J.-H., Xiang, H.-J., Gong, X.-G., Walsh, A., Kang, J., Wei, S.-H.: Structural diversity and electronic properties of Cu2Snx3 (X = S, Se): a first-principles investigation. Phys. Rev. B 84, 075213 (2011)

    Article  ADS  Google Scholar 

  67. Friedlmeier, T.M., Wieser, N., Walter, T., Dittrich, H., Schock, H.W.: 14th European photovoltaic solar energy conference, vol. 1, p. 1242 (1997)

    Google Scholar 

  68. Tanaka, T., Nagatomo, T., Kawasaki, D., Nishio, M., Guo, Q.X., Wakahara, A., Yoshida, A., Ogawa, H.: Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66, 1978–1981 (2005)

    Article  ADS  Google Scholar 

  69. Zhang, J., Shao, L.X., Fu, Y.J., Xie, E.Q.: Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties. Rare Met. 25, 315–319 (2006)

    Article  Google Scholar 

  70. Leitao, J.P., Santos, N.M., Fernandes, P.A., Salome, P.M.P., da Cunha, A.F., Gonzalez, J.C., Ribeiro, G.M., Matinaga, F.M.: Photoluminescence and electrical study of fluctuating potentials in Cu2ZnSnS4-based thin films. Phys. Rev. B 84, 024120 (2011)

    Article  ADS  Google Scholar 

  71. Ito, K., Nakazawa, T.: Electrical and optical properties of Stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 27, 2094–2097 (1988)

    Article  ADS  Google Scholar 

  72. Nakayama, N., Ito, K.: Sprayed films of stannite Cu2ZnSnS4. Appl. Surf. Sci. 92, 171–175 (1996)

    Article  ADS  Google Scholar 

  73. Katagiri, H., Sasaguchi, N., Hando, S., Hoshino, S., Ohashi, J., Yokota, T.: Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)

    Article  Google Scholar 

  74. Katagiri, H., Saitoh, K., Washio, T., Shinohara, H., Kurumadani, T., Miyajima, S.: Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65, 141–148 (2001)

    Article  Google Scholar 

  75. Katagiri, H., Ishigaki, N., Ishida, T., Saito, K.: Characterization of Cu2ZnSnS4 thin films prepared by vapor phase sulfurization. Jpn. J. Appl. Phys. 40, 500–504 (2001)

    Article  ADS  Google Scholar 

  76. Matsushita, H., Maeda, T., Katsui, A., Takizawa, T.: Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II = Zn, Cd; III = Ga, In; IV = Ge, Sn; VI = Se). J. Cryst. Growth 208, 416–422 (2000)

    Article  ADS  Google Scholar 

  77. Wibowo, R.A., Kim, W.S., Lee, E.S., Munir, B., Kim, K.H.: Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets. J. Phys. Chem. Solids 68, 1908–1913 (2007)

    Article  ADS  Google Scholar 

  78. Wibowo, R.A., Lee, E.S., Munir, B., Kim, K.H.: Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films. Phys. Status Solidi A 204, 3373–3379 (2007)

    Article  ADS  Google Scholar 

  79. Friedlmeier, T.M., Dittrich, H., Schock, H.W.: 11th international conference on ternary and multinary compounds. ICTMC-11 Institute of Physics Publishing, Salford, UK (1998)

    Google Scholar 

  80. Repins, I., Vora, N., Beall, C., Wei, S.-H., Yan, Y., Romero, M., Teeter, G., Du, H., To, B., Young, M., Noufi, R.: Kesterites and chalcopyrites: a comparison of close cousins. In: MRS proceedings, vol. 1324 (2011)

    Google Scholar 

  81. Schorr, S., Hoebler, H.J., Tovar, M.: A neutron diffraction study of the stannite-kesterite solid solution series. Eur. J. Mineral. 19, 65–73 (2007)

    Article  Google Scholar 

  82. Washio, T., Nozaki, H., Fukano, T., Motohiro, T., Jimbo, K., Katagiri, H.: Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation X-ray diffraction. J. Appl. Phys. 110, 074511 (2011)

    Article  ADS  Google Scholar 

  83. Kask, E., Raadik, T., Grossberg, M., Josepson, R., Krustok, J.: Deep defects in Cu2ZnSnS4 monograin solar cells. Energy Procedia 10, 261–265 (2011)

    Article  Google Scholar 

  84. Shin, B., Gunawan, O., Nestor, Y.Z., Bojarczuk, A., Chey, S.J., Guha, S.: Thin film solar cell with 8.4 % power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovoltaics Res. Appl. 21, 72–76 (2013)

    Article  Google Scholar 

  85. Araki, H., Mikaduki, A., Kubo, Y., Sato, T., Jimbo, K., Maw, W.S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A.: Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers. Thin Solid Films 517, 1457–1460 (2008)

    Article  ADS  Google Scholar 

  86. Kobayashi, T., Jimbo, K., Tsuchida, K., Shinoda, S., Oyanagi, T., Katagiri, H.: Investigation of Cu2ZnSnS4-based thin film solar cells using abundant materials. Jpn. J. Appl. Phys. 44, 783–787 (2005)

    Article  ADS  Google Scholar 

  87. Schubert, B.-A., Marsen, B., Cinque, S., Unold, T., Klenk, R., Schorr, S., Schock, H.-W.: Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog. Photovoltaics Res. Appl. 19, 93–96 (2011)

    Article  Google Scholar 

  88. Friedlmeier, T.M., Wieser, N., Walter, T., Dittrich, H., Schock, H.-W.: Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films. In: Proceedings of the 14th European PVSEC and Exhibition, P4B.10, 1242 (1997)

    Google Scholar 

  89. Katagiri, H., Jimbo, K., Moriya, K., Tsuchida, K.: Solar cell without environmental pollution by using CZTS thin film. In: Proceedings of the 3rd World conference on photovoltaic energy conversion, Osaka, pp. 2874–2879 (2003)

    Google Scholar 

  90. Weber, A., Mainz, R., Schock, H.W.: On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum. J. Appl. Phys. 107, 013516 (2010)

    Article  ADS  Google Scholar 

  91. Redinger, A., Berg, D.M., Dale, P.J., Siebentritt, S.: The consequences of Kesterite equilibria for efficient solar cells. J. Am. Chem. Soc. 133, 3320–3323 (2011)

    Article  Google Scholar 

  92. Tanaka, T., Kawasaki, D., Nishio, M., Guo, Q., Ogawa, H.: Fabrication of Cu2ZnSnS4 thin films by co-evaporation, physica status solidi C. 3, 2844–2847 (2006)

    Google Scholar 

  93. Oishi, K., Saito, G., Ebina, K., Nagahashi, M., Jimbo, K., Maw, W.S., Katagiri, H., Yamazaki, M., Araki, H., Takeuchi, A.: Growth of Cu2ZnSnS4 thin films on Si (100) substrates by multisource evaporation. Thin Solid Films 517, 1449–1452 (2008)

    Article  ADS  Google Scholar 

  94. Tanaka, T., Yoshida, A., Saiki, D., Saito, K., Guo, Q., Nishio, M., Yamaguchi, T.: Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation. Thin Solid Films 518, S29–S33 (2010)

    Article  ADS  Google Scholar 

  95. Vora, N., Blackburn, J., Repins, I., Beall, C., To, B., Pankow, J., Teeter, G., Young, M., Noufi, R.: Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se. J. Vac. Sci. Technol. A 30, 051201 (2012)

    Article  Google Scholar 

  96. Weber, A., Krauth, H., Perlt, S., Schubert, B., Kotschau, I., Schorr, S., Schock, H.W.: Multi-stage evaporation of Cu2ZnSnS4 thin films. Thin Solid Films 517, 2524–2526 (2009)

    Article  ADS  Google Scholar 

  97. Das, S., Mandal, K.C.: Comparison of Cu2ZnSnS4 thin film properties prepared by thermal evaporation of elemental metals and binary sulfide sources. In: Photovoltaic Specialists Conference (PVSC), 38th IEEE, Austin, Texas, pp. 002674–002678 (2012)

    Google Scholar 

  98. Han, S., Hasoon, S.F., Al-Thani, H.A., Hermann, A.M., Levi, D.H.: Effect of Cu deficiency on the optical properties and electronic structure of CuIn1−x Ga x Se2. J. Phys. Chem. Solids 66, 1895–1898 (2005)

    Article  ADS  Google Scholar 

  99. Chalapathy, R.B.V., Jung, G.S., Ahn, B.T.: Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells. Sol. Energy Mater. Sol. Cells 95, 3216–3221 (2011)

    Article  Google Scholar 

  100. Zoppi, G., Forbes, I., Miles, R.W., Dale, P.J., Scragg, J.J., Peter, L.M.: Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Prog. Photovoltaics Res. Appl. 17, 315–319 (2009)

    Article  Google Scholar 

  101. Momose, N., Htay, M.T., Yudasaka, T., Igarashi, S., Seki, T., Iwano, S., Hashimoto, Y., Ito, K.: Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets. Jpn. J. Appl. Phys. 50, 01BG09 (2011)

    Google Scholar 

  102. Fernandes, P.A., Salomé, P.M.P., da Cunha, A.F., Schubert, B.: Cu2ZnSnS4 solar cells prepared with sulphurized dc-sputtered stacked metallic precursors. Thin Solid Films 519, 7382–7385 (2011)

    Article  ADS  Google Scholar 

  103. Ito, K., Nakazawa, T.: Proceedings of the 4th international conference on photovoltaics science and engineering, Sydney, Australia, p. 341 (1989)

    Google Scholar 

  104. Fernandes, P.A., Salome, P.M.P., da Cunha, A.F.: Precursors’ order effect on the properties of sulfurized Cu2ZnSnS4 thin films. Semicond. Sci. Technol. 24, 105013 (2009)

    Article  ADS  Google Scholar 

  105. Seol, J.S., Lee, S.Y., Lee, J.C., Nam, H.D., Kim, K.H.: Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)

    Article  Google Scholar 

  106. Katagiri, H., Jimbo, K., Tahara, M., Araki, H., Oishi, K.: The influence of the composition ratio on CZTS-based thin film solar cells. In: MRS proceedings, 1165-M04-01 (2009). doi:10.1557/PROC-1165-M04-01

  107. Yoo, H., Kim, J.: Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films. Thin Solid Films 518, 6567–6572 (2010)

    Article  ADS  Google Scholar 

  108. Liu, F., Zhang, K., Lai, Y., Li, J., Zhang, Z., Liu, Y.: Growth and characterization of Cu2ZnSnS4 thin films by dc reactive magnetron sputtering for photovoltaic applications. Electrochem. Solid-State Lett. 13, H379–H381 (2010)

    Article  Google Scholar 

  109. Jimbo, K., Kimura, R., Kamimura, T., Yamada, S., Maw, W.S., Araki, H., Oishi, K., Katagiri, H.: Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515, 5997–5999 (2007)

    Article  ADS  Google Scholar 

  110. Chrisey, D.B., Hubler, G.K.: Pulsed laser deposition of thin films, vol. 14. Wiley, New York (1994)

    Google Scholar 

  111. Sekiguchi, K., Tanaka, K., Moriya, K., Uchiki, H.: Epitaxial growth of Cu2ZnSnS4 thin films by pulsed laser deposition. Phys. Status Solidi C 3, 2618–2621 (2006)

    Article  ADS  Google Scholar 

  112. Moriya, K., Tanaka, K., Uchiki, H.: Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 46, 5780–5781 (2007)

    Article  ADS  Google Scholar 

  113. Moriya, K., Tanaka, K., Uchiki, H.: Cu2ZnSnS4 thin films annealed in H2S atmosphere for solar cell absorber prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 47, 602–604 (2008)

    Article  ADS  Google Scholar 

  114. Pawar, S.M., Moholkar, A.V., Kim, I.K., Shin, S.W., Moon, J.H., Rhee, J.I., Kim, J.H.: Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films. Curr. Appl. Phys. 10, 565–569 (2010)

    Article  ADS  Google Scholar 

  115. Sun, L., He, J., Kong, H., Yue, F., Yang, P., Chu, J.: Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method. Sol. Energy Mater. Sol. Cells 95, 2907–2913 (2011)

    Article  Google Scholar 

  116. Moholkar, A.V., Shinde, S.S., Babar, A.R., Sim, K., Lee, H., Rajpure, K.Y., Patil, P.S., Bhosale, C.H., Kim, J.H.: Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells. J. Alloy. Compd. 509, 7439–7446 (2011)

    Article  Google Scholar 

  117. Moholkar, A.V., Shinde, S.S., Babar, A.R., Sim, K.-U., Kwon, Y., Rajpure, K.Y., Patil, P.S., Bhosale, C.H., Kim, J.H.: Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate. Solar Energy 85, 1354–1363 (2011)

    Google Scholar 

  118. Moholkar, A.V., Shinde, S.S., Agawane, G.L., Jo, S.H., Rajpure, K.Y., Patil, P.S., Bhosale, C.H., Kim, J.H.: Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: an attempt to improve the efficiency. J. Alloy. Compd. 544, 145–151 (2012)

    Article  Google Scholar 

  119. Panthani, M.G., Akhavan, V., Goodfellow, B., Schmidtke, J.P., Dunn, L., Dodabalapur, A., Barbara, P.F., Korgel, B.A.: Synthesis of CuInS2, CuInSe2, and Cu(In x Ga1−x )Se2 (CIGS) nanocrystal “Inks” for printable photovoltaics. J. Am. Chem. Soc. 130, 16770–16777 (2008)

    Article  Google Scholar 

  120. Allen, P.M., Bawendi, M.G.: Ternary I–III–VI quantum dots luminescent in the red to near-infrared. J. Am. Chem. Soc. 130, 9240–9241 (2008)

    Article  Google Scholar 

  121. Hernandez-Pagan, E.A., Wang, W., Mallouk, T.E.: Template electrodeposition of single-phase p- and n-type copper indium diselenide (CuInSe2) nanowire arrays. ACS Nano 5, 3237–3241 (2011)

    Article  Google Scholar 

  122. Guo, Q., Kim, S.J., Kar, M., Shafarman, W.N., Birkmire, R.W., Stach, E.A., Agrawal, R., Hillhouse, H.W.: Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 8, 2982–2987 (2008)

    Article  ADS  Google Scholar 

  123. Steinhagen, C., Panthani, M.G., Akhavan, V., Goodfellow, B., Koo, B., Korgel, B.A.: Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc. 131, 12554–12555 (2009)

    Article  Google Scholar 

  124. Guo, Q., Hillhouse, H.W., Agrawal, R.: Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 131, 11672–11673 (2009)

    Article  Google Scholar 

  125. Riha, S.C., Parkinson, B.A., Prieto, A.L.: Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J. Am. Chem. Soc. 131, 12054–12055 (2009)

    Article  Google Scholar 

  126. Cao, Y., Denny Jr, M.S., Caspar, J.V., Farneth, W.E., Guo, Q., Ionkin, A.S., Johnson, L.K., Lu, M., Malajovich, I., Radu, D., Rosenfeld, H.D., Roy, K., Choudhury, W., Wu, W.: High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134, 15644–15647 (2012)

    Article  Google Scholar 

  127. Kameyama, T., Osaki, T., Okazaki, K., Shibayama, T., Kudo, A., Kuwabata, S., Torimoto, T.: Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. J. Mater. Chem. 20, 5319–5324 (2010)

    Article  Google Scholar 

  128. Riha, S.C., Fredrick, S.J., Sambur, J.B., Liu, Y., Prieto, A.L., Parkinson, B.A.: Photoelectrochemical characterization of nanocrystalline thin-film Cu2ZnSnS4 photocathodes. ACS Appl. Materi. Interfaces 3, 58–66 (2011)

    Article  Google Scholar 

  129. Shavel, A., Arbiol, J., Cabot, A.: Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2Zn x Sn y Se1+x+2y . J. Am. Chem. Soc. 132, 4514–4515 (2010)

    Article  Google Scholar 

  130. Lu, X., Zhuang, Z., Peng, Q., Li, Y.: Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem. Commun. 47, 3141–3143 (2011)

    Article  Google Scholar 

  131. Dai, P., Shen, X., Lin, Z., Feng, Z., Xu, H., Zhan, J.: Band-gap tunable (Cu2Sn) x/3Zn1−x S nanoparticles for solar cells. Chem. Commun. 46, 5749–5751 (2010)

    Article  Google Scholar 

  132. Cao, M., Shen, Y.: A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles. J. Cryst. Growth 318, 1117–1120 (2011)

    Article  ADS  Google Scholar 

  133. Shi, L., Pei, C., Xu, Y., Li, Q.: Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Am. Chem. Soc. 133, 10328–10331 (2011)

    Article  Google Scholar 

  134. Todorov, T.K., Reuter, K.B., Mitzi, D.B.: High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010)

    Article  Google Scholar 

  135. Barkhouse, D.A.R., Gunawan, O., Gokmen, T., Todorov, T.K., Mitzi, D.B.: Device characteristics of a 10.1 % hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovoltaics Res. Appl. 20, 6–11 (2012)

    Article  Google Scholar 

  136. Washio, T., Shinji, T., Tajima, S., Fukano, T., Motohiro, T., Jimbo, K., Katagiri, H.: 6 % efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 22, 4021–4024 (2012)

    Article  Google Scholar 

  137. Bhattacharya, R.N.: CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers. Sol. Energy Materials Solar Cells 113, 96–99 (2013)

    Article  Google Scholar 

  138. Ahmed, S., Reuter, K.B., Gunawan, O., Guo, L., Romankiw, L.T., Deligianni, H.: A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253–259 (2012)

    Article  Google Scholar 

  139. Ennaoui, A., Steiner, M.L., Weber, A., Ras, D.A., Kotschau, I., Schock, H.W., Schurr, R., Holzing, A., Jost, S., Hock, R., Vob, T., Schulze, J., Kirbs, A.: Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 517, 2511–2514 (2009)

    Article  ADS  Google Scholar 

  140. Araki, H., Kubo, Y., Jimbo, K., Maw, W.S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A.: Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu–Zn–Sn precursors. Phys. Status Solidi C 6, 1266–1268 (2009)

    Article  ADS  Google Scholar 

  141. Kurihara, M., Berg, D., Fisher, J., Siebentritt, S., Dale, P.J.: Kesterite absorber layer uniformity from electrodeposited precursors. Phys. Status Solidi C 6, 1241–1244 (2009)

    Article  ADS  Google Scholar 

  142. Pawar, S.M., Pawar, B.S., Moholkar, A.V., Choi, D.S., Yun, J.H., Moon, J.H., Kolekar, S.S., Kim, J.H.: Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochim. Acta 55, 4057–4061 (2010)

    Article  Google Scholar 

  143. Chan, C.P., Lam, H., Surya, C.: Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol. Energy Mater. Sol. Cells 94, 207–211 (2010)

    Article  Google Scholar 

  144. Schurr, R., Hölzing, A., Jost, S., Hock, R., Voß, T., Schulze, J., Kirbs, A., Ennaoui, A., Lux-Steiner, M., Weber, A., Kötschau, I., Schock, H.-W.: The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films 517, 2465–2468 (2009)

    Article  ADS  Google Scholar 

  145. Bhattacharya, R.N.: Fabrication of ionic liquid electrodeposited Cu–Sn–Zn–S–Se thin films and method of making, United States Patent Application Publication No.: US 2013/0168825 A1, July 4, 2013

    Google Scholar 

  146. Farinella, M., Inguanta, R., Spano, T., Livreri, P., Piazza, S., Sunseri, C.: Electrochemical deposition of CZTS thin films on flexible substrate. Energy Procedia 44, 105–110 (2014)

    Article  Google Scholar 

  147. Bhattacharya, R.N.: 3.6 %-CZTSS Device fabricated from ionic liquid electrodeposited Sn layer. Open Surface Sci. J. 5, 21–24 (2013)

    Google Scholar 

  148. Timmo, K., Altosaar, M., Raudoja, J., Muska, K., Pilvet, M., Kauk, M., Varema, T., Danilson, M., Volobujeva, O., Mellikov, E.: Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells. Sol. Energy Mater. Sol. Cells 94, 1889–1892 (2010)

    Article  Google Scholar 

  149. Mellikov, E., Meissner, D., Varema, T., Altosaar, M., Kauk, M., Volobujeva, O., Raudoja, J., Timmo, K., Danilson, M.: Monograin materials for solar cells. Sol. Energy Mater. Sol. Cells 93, 65–68 (2009)

    Article  Google Scholar 

  150. Kauk, M., Muska, K., Altosaar, M., Raudoja, J., Pilvet, M., Varema, T., Timmo, K., Volobujeva, O.: Effects of sulphur and tin disulphide vapour treatments of Cu2ZnSnS(Se)4 absorber materials for monograin solar cells. Energy Procedia 10, 197–202 (2011)

    Article  Google Scholar 

  151. Katagiri, H.: Cu2ZnSnS4 thin film solar cells. Thin Solid Films 480–481, 426–432 (2005)

    Article  Google Scholar 

  152. Jeong, A.R., Jo, W., Jung, S., Gwak, J., Yun, J.H.: Enhanced exciton separation through negative energy band bending at grain boundaries of Cu2ZnSnSe4 thin-films. Appl. Phys. Lett. 99, 082103 (2011)

    Article  ADS  Google Scholar 

  153. Shin, B., Wang, K., Gunawan, O., Reuter, K.B., Chey, S.J., Bojarczuk, N.A., Todorov, T., Mitzi, D.B., Guha, S.: Photovoltaic specialists conference (PVSC), 37th IEEE (2011), pp. 002510–002514

    Google Scholar 

  154. Jung, S., Gwak, J., Yun, J.H., Ahn, S.J., Nam, D., Cheong, H., Ahn, S., Cho, A., Shin, K.S., Yoon, K.H.: Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process. Thin Solid Films 535, 52–56 (2013)

    Article  ADS  Google Scholar 

  155. Platzer-Björkman, C., Scragg, J., Flammersberger, H., Kubart, T., Edoff, M.: Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells. Solar Energy Materials and Solar Cells 98, 110–117 (2012)

    Google Scholar 

  156. Ericson, T., Scragg, J.J., Kubart, T., Törndahl, T., Platzer-Björkman, C.: Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells. Thin Solid Films 535, 22–26 (2013)

    Article  ADS  Google Scholar 

  157. Lechner, R., Jost, S., Palm, J., Gowtham, M., Sorin, F., Louis, B., Yoo, H., Wibowo, R.A., Hock, R.: Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors. Thin Solid Films 535, 5–9 (2013)

    Article  ADS  Google Scholar 

  158. Woo, K., Kim, Y., Moon, J.: A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ. Sci. 5, 5340–5345 (2012)

    Article  Google Scholar 

  159. Ki, W., Hillhouse, H.W.: Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent. Adv. Energy Mater. 1, 732–735 (2011)

    Article  Google Scholar 

  160. Ford, G.M., Guo, Q., Agrawal, R., Hillhouse, H.W.: Earth abundant element Cu2Zn(Sn1−x Ge x )S4 nanocrystals for tunable band gap solar cells: 6.8 % efficient device fabrication. Chem. Mater. 23, 2626–2629 (2011)

    Article  Google Scholar 

  161. Maeda, K., Tanaka, K., Fukui, Y., Uchiki, H.: Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Sol. Energy Mater. Sol. Cells 95, 2855–2860 (2011)

    Article  Google Scholar 

  162. Tanaka, K., Fukui, Y., Moritake, N., Uchiki, H.: Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 95, 838–842 (2011)

    Article  Google Scholar 

  163. Moritake, N., Fukui, Y., Oonuki, M., Tanaka, K., Uchiki, H.: Preparation of Cu2ZnSnS4 thin film solar cells under non-vacuum condition. Phys. Status Solidi C 6, 1233–1236 (2009)

    Article  ADS  Google Scholar 

  164. Tanaka, K., Oonuki, M., Moritake, N., Uchiki, H.: Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 93, 583–587 (2009)

    Article  Google Scholar 

  165. Jiang, M., Li, Y., Dhakal, R., Thapaliya, P., Mastro, M., Caldwell, J.D., Kub, F., Yan, X.: Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. J. Photonics Energy 1, 019501 (2011)

    Article  Google Scholar 

  166. Ilari, G.M., Fella, C.M., Ziegler, C., Uhl, A.R., Romanyuk, Y.E., Tiwari, A.N.: Cu2ZnSnSe4 solar cell absorbers spin-coated from amine-containing ether solutions. Sol. Energy Mater. Sol. Cells 104, 125–130 (2012)

    Article  Google Scholar 

  167. Zhou, Z., Wang, Y., Xu, D., Zhang, Y.: Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Sol. Energy Mater. Sol. Cells 94, 2042–2045 (2010)

    Article  Google Scholar 

  168. Chen, Q., Cheng, S., Zhuang, S., Dou, X.: Cu2ZnSnS4 solar cell prepared entirely by non-vacuum processes. Thin Solid Films 520, 6256–6261 (2012)

    Article  ADS  Google Scholar 

  169. Prabhakar, T., Nagaraju, J.: Device parameters of Cu2ZnSnS4 thin film solar cell. Photovoltaic Specialists Conference (PVSC), 37th IEEE, Seattle, pp. 001346–001351 (2011)

    Google Scholar 

  170. Patel, M., Mukhopadhyay, I., Ray, A.: Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J. Phys. D Appl. Phys. 45, 445103 (2012)

    Article  ADS  Google Scholar 

  171. Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K., Bent, S.F.: Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films 519, 2488–2492 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu N. Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, S., Mandal, K.C., Bhattacharya, R.N. (2016). Earth-Abundant Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells. In: Paranthaman, M., Wong-Ng, W., Bhattacharya, R. (eds) Semiconductor Materials for Solar Photovoltaic Cells. Springer Series in Materials Science, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-20331-7_2

Download citation

Publish with us

Policies and ethics