Skip to main content

Advertisement

Log in

Fabrication of biosensor based on core–shell and large void structured magnetic mesoporous microspheres immobilized with laccase for dopamine detection

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Fe3O4@SiO2@vmSiO2 microspheres with ordered mesochannels and large inter-lamellar void were successfully prepared through stepwise solution-phase interface deposition. Fe3O4 nanoparticles were coated with SiO2 via the Stöber method, and they were further coated with mesoporous SiO2 using aggregation of cetyltrimethylammonium chloride as template to prepare Fe3O4@SiO2@vmSiO2. The Fe3O4@SiO2@vmSiO2 microspheres show a well-defined core–shell structure with high magnetization (~ 30.9 emu g−1), ordered mesochannel (~ 6.8 nm in diameter), and inter-lamellar void (~ 30 nm). Laccase (LAC) was immobilized on a modified Fe3O4@SiO2@vmSiO2 microsphere by covalent attachment and stabilized onto the glassy carbon electrode (GCE) surface (Fe3O4@SiO2@vmSiO2-LAC/GCE) in the fabrication of novel immobilized LAC biosensors for monitoring dopamine (DA). The electrochemical properties of the biosensor were investigated with electrochemical impedance spectroscopy and cyclic voltammetry. The immobilized LAC biosensor possesses good DA electrocatalytic activity with a linear range of 1.5–75 μmol L−1 and low detection limit of 0.177 μmol L−1 and shows strong anti-interference ability and excellent selective determination of DA that coexists with ascorbic acid. The immobilized LAC biosensor was also used to detect DA in pharmaceutical injection. The recoveries of 98.7–100.5% were obtained for the samples, which illustrate great potential for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Scheme 2
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhang X, Xu XW, Li TT, Lin M, Lin XY, Zhang H, Sun HC, Yang B (2014) Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl Mater Interfaces 6:14552–14561

    Article  Google Scholar 

  2. Zhao YL, Tao CR, Xiao G, Wei GP, Li LH, Liu CX, Su HJ (2016) Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites. Nanoscale 8:5313–5326

    Article  Google Scholar 

  3. Zhao LL, Liu HR, Wang FW, Zeng L (2014) Design of yolk–shell Fe3O4@PMAA composite microspheres for adsorption of metal ions and pH-controlled drug delivery. J Mater Chem A 2:7065–7074

    Article  Google Scholar 

  4. Yang C, Wu JJ, Hou YL (2011) Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun 47:5130–5141

    Article  Google Scholar 

  5. Xu CJ, Sun SH (2009) Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Trans 29:5583–5591

    Article  Google Scholar 

  6. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580

    Article  Google Scholar 

  7. Cheng G, Zhang JL, Liu YL, Sun DH, Ni JZ (2011) Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun 47:5732–5734

    Article  Google Scholar 

  8. Shao MF, Ning FY, Zhao JW, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@SiO2@layered double hydroxide core–shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077

    Article  Google Scholar 

  9. Wang L, Cole M, Li JT, Zheng Y, Chen YP, Miller KP, Decho AW, Benicewicz BC (2015) Polymer grafted recyclable magnetic nanoparticles. Polym Chem 6:248–255

    Article  Google Scholar 

  10. Guo XY, Mao FF, Wang WJ, Yang Y, Bai ZM (2015) Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity assessment in vitro. ACS Appl Mater Interfaces 7:14983–14991

    Article  Google Scholar 

  11. Deng YH, Qi DW, Deng CH, Zhang XM, Zhao DY (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29

    Article  Google Scholar 

  12. Yang JP, Shen DK, Wei Y, Li W, Zhang F, Kong B, Zhang SH, Teng W, Fan JW, Zhang WX, Dou SX, Zhao DY (2015) Monodisperse core–shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res 8:2503–2514

    Article  Google Scholar 

  13. Yue Q, Zhang Y, Wang C, Wang XQ, Sun ZK, Hou XF, Zhao DY, Deng YH (2015) Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. J Mater Chem A 3:4586–4594

    Article  Google Scholar 

  14. Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM, Dieck-Assad G, Martínez-Chapa SO BarcelóD, Parra R (2015) Laccase-based biosensors for detection of phenolic compounds. Trend Anal Chem 74:21–45

    Article  Google Scholar 

  15. Xiang L, Lin YQ, Yu P, Su L, Mao LQ (2007) Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: a new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochim Acta 52:4144–4152

    Article  Google Scholar 

  16. Zhou GW, Fung KK, Wong LW, Chen YJ, Renneberg R, Yang SH (2011) Immobilization of glucose oxidase on rod-like and vesicle-like mesoporous silica for enhancing current responses of glucose biosensors. Talanta 84:659–665

    Article  Google Scholar 

  17. Hu JP, Yuan BN, Zhang YM, Guo MH (2015) Immobilization of laccase on magnetic silica nanoparticles and its application in the oxidation of guaiacol, a phenolic lignin model compound. RSC Adv 5:99439–99447

    Article  Google Scholar 

  18. Das P, Barbora L, Das M, Goswami P (2014) Highly sensitive and stable laccase based amperometric biosensor developed on nano-composite matrix for detecting pyrocatechol in environmental samples. Sens Actuators B Chem 192:737–744

    Article  Google Scholar 

  19. Brondani D, Scheeren CW, Dupont J, Vieira IC (2009) Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. Sens Actuators B Chem 140:252–259

    Article  Google Scholar 

  20. Sekretaryova AN, Volkov AV, Zozoulenko IV, Turner APF, Vagin MY, Eriksson M (2016) Total phenol analysis of weakly supported water using a laccase-based microband biosensor. Anal Chim Acta 907:45–53

    Article  Google Scholar 

  21. Li GH, Nandgaonkar AG, Lu KY, Krause WE, Lucia LA, Wei QF (2016) Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy. RSC Adv 6:41420–41427

    Article  Google Scholar 

  22. Qu FJ, Ma XY, Hui YC, Chen F, Gao Y, Chen Y (2017) Surfactant-assisted preparation of nanohybrid for simultaneously improving enzyme-immobilization and electron-transfer in biosensor and biofuel cell. J Solid State Electrochem 21:1545–1557

    Article  Google Scholar 

  23. Zhu YF, Kaskel S, Shi JL, Wage T, Pée KH (2007) Immobilization of trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem Mater 19:6408–6413

    Article  Google Scholar 

  24. Qiu HJ, Xu CX, Huang XR, Ding Y, Qu YB, Gao PJ (2009) Immobilization of laccase on nanoporous gold: comparative studies on the immobilization strategies and the particle size effects. J Phys Chem C 113:2521–2525

    Article  Google Scholar 

  25. Farjami E, Campos R, Nielsen JS, Gothelf KV, Kjems J, Ferapontova EE (2013) RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine. Anal Chem 85:121–128

    Article  Google Scholar 

  26. Hou SF, Kasner ML, Su SJ, Patel K, Cuellari R (2010) Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J Phys Chem C 114:14915–14921

    Article  Google Scholar 

  27. Feng XM, Zhang Y, Zhou JH, Li Y, Chen SF, Zhang L, Ma YW, Wang LH, Yan XH (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7:2427–2432

    Article  Google Scholar 

  28. Wang K, Liu PC, Ye YH, Li J, Zhao WB, Huang XH (2014) Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine. Sens Actuators B Chem 197:292–299

    Article  Google Scholar 

  29. Li YH, Jiang YY, Mo T, Zhou HF, Li YC, Li SX (2016) Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. J Electroanal Chem 767:84–90

    Article  Google Scholar 

  30. Zhao YS, Zhao SL, Huang JM, Ye FG (2011) Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 85:2650–2654

    Article  Google Scholar 

  31. Ferreira FDP, Silva LIB, Freitas AC, Rocha-Santos TAP, Duarte AC (2009) High performance liquid chromatography coupled to an optical fiber detector coated with laccase for screening catecholamines in plasma and urine. J Chromatogr A 1216:7049–7054

    Article  Google Scholar 

  32. Ganguly M, Mondal C, Jana J, Pal A, Pal T (2014) Selective dopamine chemosensing using silver-enhanced fluorescence. Langmuir 30:4120–4128

    Article  Google Scholar 

  33. Zheng X, Kang A, Dai C, Liang Y, Xie T, Xie L, Peng Y, Wang GJ, Hao HP (2012) Quantitative analysis of neurochemical panel in rat brain and plasma by liquid chromatography–tandem mass spectrometry. Anal Chem 84:10044–10051

    Article  Google Scholar 

  34. Li LL, Liu HY, Shen YY, Zhang JR, Zhu JJ (2011) Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal Chem 83:661–665

    Article  Google Scholar 

  35. Jiang LY, Nelson GW, Abda J, Foord JS (2016) Novel modifications to carbon-based electrodes to improve the electrochemical detection of dopamine. ACS Appl Mater Interfaces 8:28338–28348

    Article  Google Scholar 

  36. Yang HY, Li YC, Liu Y, Zhang YS, Zhao Y, Zhao MJ (2015) One-pot chemical blasting synthesis of the bamboo-like multiwalled carbon nanotubes/graphene oxide nanocomposite and its application in electrochemical detection of dopamine. J Solid State Electrochem 19:145–152

    Article  Google Scholar 

  37. Lete C, Lakard B, Hihn JY, Campo FJD, Lupu S (2017) Use of sinusoidal voltages with fixed frequency in the preparation of tyrosinase based electrochemical biosensors for dopamine electroanalysis. Sens Actuators B Chem 240:801–809

    Article  Google Scholar 

  38. Zhao DY, Yu GL, Tian KL, Xu CX (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82:119–126

    Article  Google Scholar 

  39. Rouhani S, Rostami A, Salimi A (2016) Preparation and characterization of laccases immobilized on magnetic nanoparticles and their application as a recyclable nanobiocatalyst for the aerobic oxidation of alcohols in the presence of TEMPO. RSC Adv 6:26709–26718

    Article  Google Scholar 

  40. Stöber W, Fink A (1967) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  41. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem 121:5989–5993

    Article  Google Scholar 

  42. Hou XM, Xu HB, Pan L, Tian YL, Zhang X, Ma LH, Li Y, Zhao JP (2015) Adsorption of bovine serum albumin on superparamagnetic composite microspheres with a Fe3O4/SiO2 core and mesoporous SiO2 shell. RSC Adv 5:103760–103766

    Article  Google Scholar 

  43. Fuertes AB, Valle-Vigon P, Sevilla M (2012) One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem Commun 48:6124–6126

    Article  Google Scholar 

  44. Al-Zahrani E, Soomro MT, Bashami RM, Rehman AU, Danish E, Ismail IMI, Aslam M, Hameed A (2016) Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. J Environ Chem Eng 4:4330–4341

    Article  Google Scholar 

  45. Zhao WB, Wang K, Wei Y, Ma YH, Liu LL, Huang XH (2014) Laccase biosensor based on phytic acid modification of nanostructured SiO2 surface for sensitive detection of dopamine. Langmuir 30:11131–11137

    Article  Google Scholar 

  46. Cui RJ, Yin F, Zhou LJ, Pan HC (2011) Direct electrochemistry of hemoglobin based on Fe3O4@SiO2 nanoparticles modified electrode. Chin J Chem 29:2481–2486

    Article  Google Scholar 

  47. Rawal R, Chawla S, Pundir CS (2011) Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyaniline gold electrode. Anal Biochem 419:196–204

    Article  Google Scholar 

  48. Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron(III) oxide nanoparticles platform. Sens Actuators B Chem 148:93–102

    Article  Google Scholar 

  49. Zhang FY, Li YJ, Gu YE, Wang ZH, Wang CM (2011) One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173:103–109

    Article  Google Scholar 

  50. Hasebe K, Osteryoung J (1975) Differential pulse polarographic determination of some carcinogenic nitrosamines. Anal Chem 47:2412–2418

    Article  Google Scholar 

  51. Ponnusamy VK, Mani V, Chen SM, Huang WT, Jen JF (2014) Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta 120:148–157

    Article  Google Scholar 

  52. Palanisamy S, Ku SH, Chen SM (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180:1037–1042

    Article  Google Scholar 

  53. Mallesha M, Manjunatha R, Nethravathi C, Suresh GS, Rajamathi M, Melo JS, Venkatesha TV (2011) Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochem 81:104–108

    Article  Google Scholar 

  54. Min K, Yoo YJ (2009) Amperometric detection of dopamine based on tyrosinase–SWNTs–Ppy composite electrode. Talanta 80:1007–1011

    Article  Google Scholar 

  55. Silva TR, Vieira IC (2016) A biosensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) and decorated with laccase for determination of dopamine. Analyst 141:216–224

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51572134, 51372124, 51503108) and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zheng, Y., Gao, T. et al. Fabrication of biosensor based on core–shell and large void structured magnetic mesoporous microspheres immobilized with laccase for dopamine detection. J Mater Sci 53, 7996–8008 (2018). https://doi.org/10.1007/s10853-018-2165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2165-z

Keywords

Navigation