Skip to main content
Log in

A thermally stable and hydrophobic composite aerogel made from cellulose nanofibril aerogel impregnated with silica particles

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A thermally stable and hydrophobic cellulose nanofibril (CNF)–silica composite aerogel was prepared by simply immersing the CNF aerogel into the silica sol with different tetraethyl orthosilicate (TEOS) concentration and shaping it by means of low-risk ambient pressure drying. After the introduction of the mesoporous silica particles into the cellulose network structure, the BET surface area was found to have sharply increased from 11.3 to 497.8 m2 g−1. All composite aerogels displayed good thermal stability and super-hydrophobicity compared with pure cellulose aerogel. The onset temperature of pyrolysis rose from 317 to 348 °C, and the contact angle reached 152.1°. The TEOS concentration was found to have a great influence on the silica content and the dispersion of silica particles in the cellulose scaffold. Good chemical compatibility at the nanoscale level was present, which indicates that a continuous and homogeneous CNF–silica interface would yield great improvement in thermal properties and water resistance. The results show that a composite aerogel prepared at 2.5 mol L−1 TEOS concentration has better comprehensive performance with only a slightly decrease in mechanical properties compared to CNF aerogel. Thus, this study details a new direction for the synthesis of a cellulose–silica composite aerogel with tailored properties achieved by controlling the silica content and silica dispersion in the cellulose scaffold. Thermally stable, water-resistant, and environmentally friendly cellulose–silica composite aerogels may provide a promising development for designing new functional aerogels that can be applied in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zou J, Liu J, Karakoti AS, Kumar A, Joung D, Li Q, Khondaker SI, Seal S, Zhai L (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302

    Article  CAS  Google Scholar 

  2. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129

    Article  CAS  Google Scholar 

  3. Khare VP, Greenberg AR, Kelley SS, Pilath H, Juhn Roh I, Tyber J (2007) Synthesis and characterization of dense and porous cellulose films. J Appl Polym Sci 105:1228–1236

    Article  CAS  Google Scholar 

  4. Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453

    Article  CAS  Google Scholar 

  5. Chin SF, Binti Romainor AN, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243

    Article  CAS  Google Scholar 

  6. He X, Cheng L, Wang Y, Zhao J, Zhang W, Lu C (2014) Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydr Polym 111:683–687

    Article  CAS  Google Scholar 

  7. Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74

    Article  CAS  Google Scholar 

  8. Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547

    Article  CAS  Google Scholar 

  9. Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53:10394–10397

    Article  CAS  Google Scholar 

  10. Sehaqui H (2011) Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood. Ph.D. dissertation, KTH School of Chemical Science and Engineering

  11. Yang C, Chen C, Pan Y, Li S, Wang F, Li J, Li N, Li X, Zhang Y, Li D (2015) Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim Acta 182:264–271

    Article  CAS  Google Scholar 

  12. Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Int 7:19809–19815

    Article  CAS  Google Scholar 

  13. Wang M, Anoshkin IV, Nasibulin AG, Rha R, Nonappa Laine J, Kauppinen EI, Ikkala O (2016) Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Adv 6:89051–89056

    Article  CAS  Google Scholar 

  14. Wan C, Li J (2015) Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method. Mater Des 83:620–625

    Article  CAS  Google Scholar 

  15. Ostrikov K (2005) Reactive plasmas as a versatile nanofabrication tool. Rev Mod Phys 77:489–511

    Article  CAS  Google Scholar 

  16. Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410

    Article  CAS  Google Scholar 

  17. Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RHA (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 5:1967–1974

    Article  CAS  Google Scholar 

  18. Russler A, Wieland M, Bacher M, Henniges U, Miethe P, Liebner F, Potthast A, Rosenau T (2012) AKD-modification of bacterial cellulose aerogels in supercritical CO2. Cellulose 19:1337–1349

    Article  CAS  Google Scholar 

  19. Liu S, Yan Q, Tao D, Yu T, Liu X (2012) Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydr Polym 89:551–557

    Article  CAS  Google Scholar 

  20. Xia YD, Mokaya R (2004) Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv Mater 16:886–891

    Article  CAS  Google Scholar 

  21. Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose–silica nanocomposite aerogels by in-situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079

    Article  CAS  Google Scholar 

  22. Meng Y, Wu Q, Young TM, Huang B, Wang S, Li Y (2017) Analyzing three-dimensional structure and geometrical shape of individual cellulose nanocrystal from switchgrass. Polym Compos 38:2368–2377. https://doi.org/10.1002/pc.23819

    Article  CAS  Google Scholar 

  23. Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447

    Article  CAS  Google Scholar 

  24. Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–96

    Article  CAS  Google Scholar 

  25. Hüsing N, Schubert U, Mezei R, Fratzl P, Riegel B, Kiefer W, Kohler D, Mader W (1999) Formation and structure of gel networks from Si(OEt)4/(MeO)3Si(CH2)3NR′2 mixtures (NR′2 = NH2 or NHCH2CH2NH2). Chem Mater 11:451–457

    Article  Google Scholar 

  26. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Fu J, He C, Huang J, Chen Z, Wang S (2016) Cellulose nanofibril reinforced silica aerogels: optimization of the preparation process evaluated by a response surface methodology. RSC Adv 6:100326–100333

    Article  CAS  Google Scholar 

  28. Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418

    Article  CAS  Google Scholar 

  29. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos B Eng 51:28–34

    Article  CAS  Google Scholar 

  30. Shi J, Lu L, Guo W, Zhang J, Cao Y (2013) Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydr Polym 98:282–289

    Article  CAS  Google Scholar 

  31. Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22:11642–11650

    Article  CAS  Google Scholar 

  32. Sinha E, Rout SK (2008) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. J Mater Sci 43:2590–2601. https://doi.org/10.1007/s10853-008-2478-4

    Article  CAS  Google Scholar 

  33. Guzun AS, Stroescu M, Jinga SI, Voicu G, Grumezescu AM, Holban AM (2014) Plackett–Burman experimental design for bacterial cellulose–silica composites synthesis. Mater Sci Eng C 42:280–288

    Article  CAS  Google Scholar 

  34. Wei T, Chang T, Lu S, Chang Y (2007) Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J Am Ceram Soc 90:2003–2007

    Article  CAS  Google Scholar 

  35. Liu S, Yu T, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids Surf A 439:159–166

    Article  CAS  Google Scholar 

  36. He P, Gao X, Li X, Jiang Z, Yang Z, Wang C, Gu Z (2014) Highly transparent silica aerogel thick films with hierarchical porosity from water glass via ambient pressure drying. Mater Chem Phys 147:65–74

    Article  CAS  Google Scholar 

  37. He F, Chao S, Gao Y, He X, Li M (2014) Fabrication of hydrophobic silica–cellulose aerogels by using dimethyl sulfoxide (DMSO) as solvent. Mater Lett 137:167–169

    Article  CAS  Google Scholar 

  38. Javadi A, Zheng Q, Payen F, Javadi A, Altin Y, Cai Z, Sabo R, Gong S (2013) Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl Mater Interfaces 5:5969–5975

    Article  CAS  Google Scholar 

  39. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  40. Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  41. Wan C, Lu Y, Jiao Y, Cao J, Sun Q, Li J (2015) Preparation of mechanically strong and lightweight cellulose aerogels from cellulose-NaOH/PEG solution. J Sol–Gel Sci Techn 74:256–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Special Fund for Forest Scientific Research in the Public Welfare Grant (No. 201504603), the 2014 UTIA Innovation Grant, and Tennessee Experimental Station Project (#TEN00510).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siqun Wang or Yongsheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., He, C., Wang, S. et al. A thermally stable and hydrophobic composite aerogel made from cellulose nanofibril aerogel impregnated with silica particles. J Mater Sci 53, 7072–7082 (2018). https://doi.org/10.1007/s10853-018-2034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2034-9

Navigation