Skip to main content

Advertisement

Log in

Effects of macromolecular diol containing different carbamate content on the micro-phase separation of waterborne polyurethane

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Macromolecular diols with different carbamate content were synthesized by alterative n(PPG)/n(HMDI) ratio. The molecular weights of these macromolecular diols were measured by GPC. In addition, based on these macromolecular diols, waterborne polyurethanes (WPU) were prepared by the pre-polymerization method. The structure and molecular weight of the WPU were characterized by 1HNMR, FTIR and GPC, respectively. When the mole ratio of n(PPG) and n(HMDI) decreased, the particle distribution of WPU became broader and the average particle size became larger. Furthermore, the hydrogen bonding interaction in WPU films was analyzed by the deconvolution of amino, carbonyl band and ether band of FTIR spectra. The results showed that when introduced carbamate into the macromolecular diol, the ordered hydrogen bonding interaction in hard segments increased and the interaction between carbamate and ether occurred. The increased hydrogen bonding interaction leads to the higher micro-phase separation confirmed by AFM and DSC test. Carbamate in soft segments can significantly increase the modulus of WPU in the whole temperature range. Meanwhile, the tensile strength and the elongation at break were obviously increased when introduced carbamate into the soft segments because of the crosslinked structure and micro-phase separation morphology. The tensile strength of sample WPU1 caught 28.28 MPa which was 2.37 times and the elongation at break caught 911% which was 2.18 times than that of WPU0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Cheng D, Wen YB, An XY, Zhu XH, Ni YH (2016) TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydr Polym 151:326–334

    Article  Google Scholar 

  2. Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH (2017) A whole-procedure solvent-free route to CO2-based waterborne polyurethane by an elevated-temperature dispersing strategy. Green Chem 19(9):2194–2200

    Article  Google Scholar 

  3. Jeong JH, Han YC, Yang JH, Kwak DS, Jeong HM (2017) Waterborne polyurethane modified with poly (ethylene glycol) macromer for waterproof breathable coating. Prog Org Coat 103:69–75

    Article  Google Scholar 

  4. Lei L, Xia ZB, Zhang L, Zhang YH, Zhong L (2016) Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions. Prog Org Coat 97:19–27

    Article  Google Scholar 

  5. Hu L, Jiang PP, Zhang PB, Bian G, Sheng SS, Huang M, Bao YM, Xia JL (2016) Amine–graphene oxide/waterborne polyurethane nanocomposites: effects of different amine modifiers on physical properties. J Mater Sci 51(18):8296–8309. https://doi.org/10.1007/s10853-016-9993-5

    Article  Google Scholar 

  6. Fatemeh F, Khorasani M, Ebrahimi M (2017) Improving the mechanical properties of waterborne nitrocellulose coating using nano-silica particles. Prog Org Coat 109:110–116

    Article  Google Scholar 

  7. Xiao Y, Jiang L, Liu ZM, Yuan Y, Yan PY, Zhou CL, Lei JX (2017) Effect of phase separation on the crystallization of soft segments of green waterborne polyurethanes. Polym Test 60:160–165

    Article  Google Scholar 

  8. Reche JAJ, Pacios VG, Costa V, Colera M, Martínez JMM (2015) Role of the interactions between carbonate groups on the phase separation and properties of waterborne polyurethane dispersions prepared with copolymers of polycarbonate diol. Prog Org Coat 88:199–211

    Article  Google Scholar 

  9. Cakić SM, Ristić IS, Cincović MM, Špírková M (2013) The effects of the structure and molecular weight of the macrodiol on the properties polyurethane anionic adhesives. Int J Adhes Adhes 41:132–139

    Article  Google Scholar 

  10. Cakić SM, Špírková M, Ristić IS, B-Simendić JK, M-Cincović M, Poręba R (2013) The waterborne polyurethane dispersions based on polycarbonate diol: effect of ionic content. Mater Chem Phys 138(1):277–285

    Article  Google Scholar 

  11. Ayres E, Orefice RL, Yoshida MI (2007) Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions. Eur Polym J 43(8):3510–3521

    Article  Google Scholar 

  12. Wang L, Shen YD, Lai XJ, Li ZJ, Liu M (2011) Synthesis and properties of crosslinked waterborne polyurethane. J Polym Res 18(3):469–476

    Article  Google Scholar 

  13. Santamaria-Echart A, Arbelaiz A, Saralegi A, Fernández- d’Arlas B, Eceiza A, Corcuera MA (2015) Relationship between reagents molar ratio and dispersion stability and film properties of waterborne polyurethanes. Colloids Surf A 482:554–561

    Article  Google Scholar 

  14. Hwang HD, Park CH, Moon JI, Kim HJ, Masubuchi T (2011) UV-curing behavior and physical properties of waterborne UV-curable polycarbonate-based polyurethane dispersion. Prog Org Coat 72(4):663–675

    Article  Google Scholar 

  15. García-Pacios V, Jofre-Reche JA, Costa V, Colera M, Martín-Martínez JM (2013) Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights. Prog Org Coat 76(10):1484–1493

    Article  Google Scholar 

  16. Lee YM, Lee JC, Kim BK (1994) Effect of soft segment length on the properties of polyurethane anionomer dispersion. Polymer 35(5):1095–1099

    Article  Google Scholar 

  17. Kim BK, Yang JS, Yoo SM, Lee JS (2003) Waterborne polyurethanes containing ionic groups in soft segments. Colloid Polym Sci 281(5):461–468

    Article  Google Scholar 

  18. Santamaria-Echart A, Fernandes I, Saralegi A, Costa MRPFN, Barreiro F, Corcuera MA, Eceiz A (2016) Synthesis of waterborne polyurethane-urea dispersions with chain extension step in homogeneous and heterogeneous media. J Colloid Interface Sci 476:184–192

    Article  Google Scholar 

  19. Ren ZY, Ma DZ, Yang XZ (2003) H-bond and conformations of donors and acceptors in model polyether based polyurethanes. Polymer 44(20):6419–6425

    Article  Google Scholar 

  20. García-Pacios V, Costa V, Colera M, Martín-Martínez JM (2010) Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. Int J Adhes Adhes 30(6):456–465

    Article  Google Scholar 

  21. Lee J, Kim M, Hong CK, Shim SE (2007) Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents. Meas Sci Technol 18(12):3707–3712

    Article  Google Scholar 

  22. Lee HT, Hwang JJ, Liu HJ (2006) Effects of ionic interactions between clay and waterborne polyurethanes on the structure and physical properties of their nanocomposite dispersions. J Polym Sci, Part A: Polym Chem 44(19):5801–5807

    Article  Google Scholar 

  23. Liu N, Zhao YH, Kang MQ, Wang JW, Wang XK, Feng YL, Yin N, Li QF (2015) The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Prog Org Coat 82:46–56

    Article  Google Scholar 

  24. Yeh JM, Yao CT, Hsieh CF, Lin LH, Chen PL, Wu JC, Yang HC, Wu CP (2008) Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings. Eur Polym J 44(10):3046–3056

    Article  Google Scholar 

  25. Pérez-Limiñana MA, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló AC, Martín-Martínez JM (2005) Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int J Adhes Adhes 25(6):507–517

    Article  Google Scholar 

  26. Prabhakar A, Chattopadhyay DK, Jagadeesh B, Raju KVSN (2005) Structural investigations of polypropylene glycol (PPG) and isophorone diisocyanate (IPDI)-based polyurethane prepolymer by 1D and 2D NMR spectroscopy. J Polym Sci, Part A: Polym Chem 43(6):1196–1209

    Article  Google Scholar 

  27. Rahman MM, Kim EY, Kwon JY, Yoo HJ, Kim HD (2007) Cross-linking reaction of waterborne polyurethane adhesives containing different amount of ionic groups with hexamethoxymethyl melamine. Int J Adhes Adhes 28(1):47–54

    Google Scholar 

  28. Pavličević J, Špírková M, Bera O, Jovičić M, Pilić B, Baloš S, Budinski-Simendić J (2014) The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Compos Part B Eng 60:673–679

    Article  Google Scholar 

  29. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) FT-IR and XPS studies of polyurethane-urea-imide coatings. Prog Org Coat 55(3):231–243

    Article  Google Scholar 

  30. Špírková M, Pavličević J, Strachota A, Poreba R, Bera O, Kaprálková L, Baldrian J, Šlouf M, Lazić N, Budinski-Simendić J (2011) Novel polycarbonate-based polyurethane elastomers: composition-property relationship. Eur Polym J 47(5):959–972

    Article  Google Scholar 

  31. Wen TC, Wu MS, Yang CH (1999) Spectroscopic investigations of poly (oxypropylene) glycol-based waterborne polyurethane doped with lithium perchlorate. Macromolecules 32(8):2712–2720

    Article  Google Scholar 

  32. Mattia J, Painter P (2007) A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 40(5):1546–1554

    Article  Google Scholar 

  33. Digar M, Hung SL, Wang HL, Wen TC, Gopalan A (2002) Study of ionic conductivity and microstructure of a cross-linked polyurethane acrylate electrolyte. Polymer 43(3):681–691

    Article  Google Scholar 

  34. Chiu CY, Hsu WH, Yen YJ, Kuo SW, Chang FC (2005) Miscibility behavior and interaction mechanism of polymer electrolytes comprising LiClO4 and MPEG-block-PCL copolymers. Macromolecules 38(15):6640–6647

    Article  Google Scholar 

  35. Santhosh P, Vasudevan T, Gopalan A, Lee KP (2006) Preparation and properties of new cross-linked polyurethane acrylate electrolytes for lithium batteries. J Power Sources 160(1):609–620

    Article  Google Scholar 

  36. Hong L, Shi LY, Tang XZ (2003) Conductivities and spectroscopic studies of polymer electrolytes based on linear polyurethane and hybrid and copolymer of linear and hyperbranched polyurethanes. Macromolecules 36(13):4989–4994

    Article  Google Scholar 

  37. Król P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 52:915–1015

    Article  Google Scholar 

  38. Kojio K, Kugumiya S, Uchiba Y, Nishino Y, Furukawa M (2009) The microphase-separated structure of polyurethane bulk and thin films. Polym J 41(2):118–124

    Article  Google Scholar 

  39. Schön P, Bagdi K, Molnár K, Markus P, Pukánszky B, Vancso GJ (2011) Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM. Eur Polym J 47:692–698

    Article  Google Scholar 

  40. Zheng JR, Ozisik R, Siegel RW (2006) Phase separation and mechanical responses of polyurethane nanocomposites. Polym 47:7786–7794

    Article  Google Scholar 

  41. Corcuera MA, Rueda L, d’Arlas BF, Arbelaiz A, Marieta C, Mondragon I, Eceiza A (2010) Microstructure and properties of polyurethanes derived from castor oil. Polym Degrad Stab 95:2175–2184

    Article  Google Scholar 

  42. Gao RL, Zhang MQ, Dixit N, Moore RB, Long TE (2012) Influence of ionic charge placement on performance of poly (ethylene glycol)-based sulfonated polyurethanes. Polymer 53(6):1203–1211

    Article  Google Scholar 

  43. Lu YS, Larock RC (2008) Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromol 9(11):3332–3340

    Article  Google Scholar 

  44. Cao XD, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19(38):7137–7145

    Article  Google Scholar 

  45. Pan HX, Chen DJ (2007) Preparation and characterization of waterborne polyurethane/attapulgite nanocomposites. Eur Polym J 43(9):3766–3772

    Article  Google Scholar 

  46. Kim BK, Lee SY, Baek SH, Choi YJ, Lee JO, Xu M (1998) Polyurethane ionomers having shape memory effects. Polymer 39(13):2803–2808

    Article  Google Scholar 

  47. Wu JR, Chen DJ (2006) Synthesis and characterization of waterborne polyurethane based oncovalently bound dimethylol propionic acid to e-caprolactone based polyester polyol. Prog Org Coat 97:203–209

    Article  Google Scholar 

  48. Santos CC, Delpech MC, Coutinho FMB (2009) Thermal and mechanical profile of cast films from waterborne polyurethanes based on polyether block copolymers. J Mater Sci 44(5):1317–1323. https://doi.org/10.1007/s10853-009-3272-7

    Article  Google Scholar 

  49. Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO (2010) Characterization of polyurethane resins by FTIR, TGA, and XRD. J Appl Polym Sci 115(1):263–268

    Article  Google Scholar 

  50. Fu HQ, Wang Y, Li XY, Chen WF (2016) Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos Sci Technol 126:86–93

    Article  Google Scholar 

Download references

Acknowledgements

The project was financed by the National 863 Project (No. 2015AA033903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gewen Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Luo, Z., Bao, J. et al. Effects of macromolecular diol containing different carbamate content on the micro-phase separation of waterborne polyurethane. J Mater Sci 53, 8639–8652 (2018). https://doi.org/10.1007/s10853-017-1908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1908-6

Keywords

Navigation