Skip to main content

Advertisement

Log in

Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The all-solid-state lithium batteries using solid electrolytes are considered to be the new generation of devices for energy storage, which might be a key solution for power electric and hybrid electric vehicles in the future. This review focuses on the crystal structures and electrochemical properties of sulfide solid electrolytes. They are classified to several subgroups according to their chemical compositions, namely thiophosphates, halide thiophosphates, sulfide without phosphorus, and glassy sulfides electrolytes, which might be potential solid electrolytes in lithium batteries and may replace the currently used polymeric electrolytes for LIBs. Through discussion, this review provides an insight into future promising sulfide electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

@ 2017, Springer

Figure 3

@ 2007, Elsevier

Figure 4

© 2011, Nature Publish Group

Figure 5

@ 2017, American Chemical Society; 2017, Elsevier; 2015, Nature Publish Group; 2013, American Chemical Society; 2016, Royal Society of Chemistry

Figure 6

@ 2016, American Chemical Society

Figure 7

@ 2015, American Chemical Society

Figure 8

© 2012, American Chemical Society

Similar content being viewed by others

References

  1. Hueso KB, Armand M, Rojo T (2013) High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 6:734–749

    Article  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  Google Scholar 

  3. He X, Zhu Y, Mo Y (2017) Origin of fast ion diffusion in super-ionic conductors. Nature Commun 8:15893. https://doi.org/10.1038/ncomms15893

    Article  Google Scholar 

  4. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2015) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116:140–162

    Article  Google Scholar 

  5. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727

    Article  Google Scholar 

  6. Naqash S, Ma QL, Tietz F, Guillon O (2017) Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction. Solid State Ion 302:83–91

    Article  Google Scholar 

  7. Kim H, Ding Y, Kohl PA (2012) LiSICON–ionic liquid electrolyte for lithium ion battery. J Power Sources 198:281–286

    Article  Google Scholar 

  8. Teng ZY, Lv HY, Wang CY, Xue HG, Pang H, Wang GX (2017) Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization. Carbon 113:63–75

    Article  Google Scholar 

  9. Baek SW, Honma I, Kim J, Rangappa D (2017) Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sources 343:22–29

    Article  Google Scholar 

  10. Raj R, Wolfenstine J (2017) Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J Power Sources 343:119–126

    Article  Google Scholar 

  11. Yan Y, Li B, Guo W, Pang H, Xue HG (2016) Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources 329:148–169

    Article  Google Scholar 

  12. Gao J, Zhao YS, Shi SQ, Li H (2016) Lithium–ion transport in inorganic solid state electrolyte. Chin Phys B 25:018211. https://doi.org/10.1088/1674-1056/25/1/018211

    Article  Google Scholar 

  13. Li F, Kitaura H, Zhou H (2013) The pursuit of rechargeable solid-state Li–air batteries. Energy Environ Sci 6:2302–2311

    Article  Google Scholar 

  14. Anantharamulu N, Koteswara Rao K, Rambabu G, Kumar BV, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46:2821–2837. https://doi.org/10.1007/s10853-011-5302-5

    Article  Google Scholar 

  15. Wu BB, Wang SY, Evans WJ, Deng DZ, Yang JH, Xiao J (2016) Interfacial behaviors between lithium ion conductors and electrode materials in various battery systems. J Mater Chem A 4:15266–15280

    Article  Google Scholar 

  16. Chen RJ, Qu WJ, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516

    Article  Google Scholar 

  17. Lin Z, Liang C (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3:936–958

    Article  Google Scholar 

  18. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  19. Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4:17251–17259

    Article  Google Scholar 

  20. Adnan S, Mohamed NS (2014) Effects of Sn substitution on the properties of Li4SiO4 ceramic electrolyte. Solid State Ion 262:559–562

    Article  Google Scholar 

  21. Li XR, Xue HG, Pang H (2017) Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst. Nanoscale 9:216–222

    Article  Google Scholar 

  22. Park M, Zhang XC, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929

    Article  Google Scholar 

  23. Lu XC, Xia GG, Lemmon JP, Yang ZG (2010) Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources 195:2431–2442

    Article  Google Scholar 

  24. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ion 180:911–916

    Article  Google Scholar 

  25. Murayama M, Kanno R, Irie M, Ito S, Hata T, Sonoyama N, Kawamoto Y (2002) Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. J Solid State Chem 168:140–148

    Article  Google Scholar 

  26. Kobayashi T, Inada T, Sonoyama N, Yamada A, Kanno R (2004) All solid-state batteries using super ionic conductor, thio-LISICON–electrode/electrolyte interfacial design. In: MRS online proceedings library archive 835

  27. Kanno R, Murayama M (2001) Lithium ionic conductor thio-LISICON: the Li2SGeS2P2S5 system. J Electrochem Soc 148:A742–A746

    Article  Google Scholar 

  28. Wang YM, Liu ZQ, Zhu XL, Tang YF, Huang FQ (2013) Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method. J Power Sources 224:225–229

    Article  Google Scholar 

  29. Inoue Y, Suzuki K, Matsui N, Hirayama M, Kanno R (2017) Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12. J Solid State Chem 246:334–340

    Article  Google Scholar 

  30. Wang ZQ, Wu MS, Liu G, Lei XL, Xu B, Ouyang CY (2014) Elastic properties of new solid state electrolyte material Li10GeP2S12: a study from first-principles calculations. Int J Electrochem Sci 9:562–568

    Google Scholar 

  31. Bron P, Johansson S, Zick K, aufderGuenne JS, Dehnen S, Roling B (2013) Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc 135:15694–15697

    Article  Google Scholar 

  32. Kowada Y, Tatsumisago M, Minami T, Adachi H (2008) Electronic state of sulfide-based lithium ion conducting glasses. J Non Cryst Solids 354:360–364

    Article  Google Scholar 

  33. Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M (2007) Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion 178:1163–1167

    Article  Google Scholar 

  34. Hayashi A, Tatsumisago M (2012) Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. Electron Mater Lett 8(2):199–207

    Article  Google Scholar 

  35. Tachez M, Malugani J, Mercier R, Robert G (1984) Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ion 14:181–185

    Article  Google Scholar 

  36. Zhu ZY, Chu IH, Ong SP (2017) Li3Y(PS4)2 and Li5PS4Cl2: new lithium superionic conductors predicted from silver thiophosphates using efficiently tiered ab initio molecular dynamics simulations. Chem Mater 29:2474–2484

    Article  Google Scholar 

  37. Zhou PF, Wang JB, Cheng FY, Li FJ, Chen J (2016) A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Chem Commun 52:6091–6094

    Article  Google Scholar 

  38. Phuc NHH, Morikawa K, Mitsuhiro T, Muto H, Matsuda A (2017) Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics 23(8):2061–2067

    Article  Google Scholar 

  39. Baek SW, Honma I, Kim J, Rangappa D (2017) Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sources 343:22–29

    Article  Google Scholar 

  40. Liu ZC, Fu WJ, Payzant EA, Yu X, Wu ZL, Dudney NJ, Kiggans J, Hong KL, Rondinone AJ, Liang CD (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135:975–978

    Article  Google Scholar 

  41. Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M (2014) Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. J Mater Chem A 2:5095–5099

    Article  Google Scholar 

  42. Wu QH, Chen M, Chen KY, Wang SS, Wang CJ, Diao GW (2016) Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors. J Mater Sci 51:1572–1580. https://doi.org/10.1007/s10853-015-9480-4

    Article  Google Scholar 

  43. Noriaki K, Kenji H, Yuichiro Y, Masaaki H, Ryoji K, Masao Y, Takashi K, Kato Yuki, Shigenori H, Koji K, Akio M (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    Article  Google Scholar 

  44. Guo SP, Ma Z, Li JC, Xue HG (2017) First investigation of the electrochemical performance of γ-LiFeO2 micro-cubes as promising anode material for lithium-ion batteries. J Mater Sci 52:1469–1476. https://doi.org/10.1007/s10853-016-0441-3

    Article  Google Scholar 

  45. Guo SP, Ma Z, Li JC, Xue HG (2017) Facile preparation and promising lithium storage ability of α-LiFeO2/porous carbon nanocomposite. J Alloys Compd 711:8–14

    Article  Google Scholar 

  46. Guo SP, Li JC, Ma Z, Chi Y, Xue HG (2017) A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries. J Mater Sci 52:2345–2355. https://doi.org/10.1007/s10853-016-0527-y

    Article  Google Scholar 

  47. Mariappan CR, Yada C, Rosciano F, Roling B (2011) Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources 196:6456–6464

    Article  Google Scholar 

  48. Zhao PC, Wen YH, Cheng J, Cao GP, Jin ZQ, Ming H, Xu Y, Zhu XY (2017) A novel method for preparation of high dense tetragonal Li7La3Zr2O12. J Power Sources 344:56–61

    Article  Google Scholar 

  49. Wang Y, William DR, Shyue PO, Lincoln JM, Jae CK, Yifei M, Gerbrand C (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14(10):1026–1031

    Article  Google Scholar 

  50. Epp V, Gun O, Deiseroth HJ, Wilkening M (2013) Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J Phys Chem Lett 4:2118–2123

    Article  Google Scholar 

  51. Boulineau S, Courty M, Tarascon JM, Viallet V (2012) Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion 221:1–5

    Article  Google Scholar 

  52. Rayavarapu P, Sharma N, Peterson V, Adams S (2012) Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X=Cl, Br, I) solid electrolytes. J Solid State Electrochem 16:1807–1813

    Article  Google Scholar 

  53. Rangasamy E, Liu ZC, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang CD (2015) An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 137:1384–1387

    Article  Google Scholar 

  54. Sedlmaier SJ, Indris S, Dietrich C, Yavuz M, Dräger C, Seggern FV, Sommer H, Janek J (2017) Li4PS4I: a Li+ superionic conductor synthesized by a solvent-based soft chemistry approach. Chem Mater 29:1830–1835

    Article  Google Scholar 

  55. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 1:16030. https://doi.org/10.1038/nenergy.2016.30

    Article  Google Scholar 

  56. Xu RC, Xia XH, Li SH, Zhang SZ, Wang XL, Tu JP (2017) All-solid-state lithium–sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J Mater Chem A 5:6310–6317

    Article  Google Scholar 

  57. Deng Z, Zhu ZY, Chu IH, Shyue PO (2016) Data-driven first-principles methods for the study and design of alkali superionic conductors. Chem Mater 29(1):281–288

    Article  Google Scholar 

  58. Rangasamy E, Liu ZC, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang CD (2015) An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 137:1384–1387

    Article  Google Scholar 

  59. Holzmann T, Schoop LM, Ali MN, Moudrakovski I, Gregori G, Maier J, Cava RJ, Lotsch BV (2016) Li0.6[Li0.2Sn0.8S2]–a layered lithium superionic conductor. Energy Environ Sci 9:2578–2585

    Article  Google Scholar 

  60. Kaib T, Haddadpour S, Kapitein M, Bron P, Schröder C, Eckert H, Roling B, Dehnen S (2012) New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4. Chem Mater 24:2211–2219

    Article  Google Scholar 

  61. Kanno R, Hata T, Kawamoto Y, Irie M (2000) Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ion 130:97–104

    Article  Google Scholar 

  62. Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C (2014) Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci 7:1053–1058

    Article  Google Scholar 

  63. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphides lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627–631

    Article  Google Scholar 

  64. Liu ZQ, Tang YF, Wang YM, Huang FQ (2014) High performance Li2S–P2S5 solid electrolyte induced by selenide. J Power Sources 260:264–267

    Article  Google Scholar 

  65. Hayashi A, Hama S, Morimoto H, Tatsumisago M, Minami T (2001) Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc 84:477–479

    Article  Google Scholar 

  66. Tatsumisago M, Hayashi A (2008) All-solid-state lithium secondary, batteries using sulfide-based glass ceramic electrolytes. Funct Mater Lett 1:31–36

    Article  Google Scholar 

  67. Huang BX, Yao XY, Huang Z, Guan YB, Jin Y, Xu XX (2015) Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. J Power Sources 284:206–211

    Article  Google Scholar 

  68. Kondo S, Takada K (1992) New lithium ion conductors based on Li2S–SiS2 system. Solid State Ion 53–56:1183–1186

    Article  Google Scholar 

  69. Morimoto H, Yamashita H, Tatsumisago M, Mechanochemical TM (1999) Mechanochemical synthesis of new amorphous materials of 60Li2S 40SiS2 with high lithium ion conductivity. J Am Ceram Soc 82:1352–1354

    Article  Google Scholar 

  70. Kim J, Yoon Y, Eom M, Shin D (2012) Characterization of amorphous and crystalline Li2S–P2S5–P2Se5 solid electrolytes for all-solid-state lithium ion batteries. Solid State Ion 225:626–630

    Article  Google Scholar 

  71. Cao C, Li ZB, Wang XL, Zhao BX, Han WQ (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers Energy Res 2:25. https://doi.org/10.3389/fenrg.2014.00025

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by National Natural Science Foundation of China (Grant Nos. 21673203 and 21771159), the Higher Education Science Foundation of Jiangsu Province (No. 15KJB150031), State Key Laboratory of Structural Chemistry Fund (No. 20150009), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Qing Lan project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Ping Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Xue, HG. & Guo, SP. Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. J Mater Sci 53, 3927–3938 (2018). https://doi.org/10.1007/s10853-017-1827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1827-6

Keywords

Navigation