Skip to main content
Log in

Large enhanced conversion efficiency of perovskite solar cells by CsBr doping

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Perovskite solar cells single-doped with Br or Cs+ ions have been proved to be an effective approach to improve their efficiency and stability. In our work, we took advantage of co-doping with Br and Cs+. At our studied doping levels from CH3NH3I:PbI2:CsBr = 1:1:0 (x = 0) to 0.85:1:0.15 (x = 0.15), CsBr doping does not introduce any detectable impurity, and the crystal grains grow larger with increasing CsBr doping level. Furthermore, when the CsBr doping level is less than x = 0.1, it can progressively enhance the optical absorption of the perovskite film, although the absorption begins to decrease when the doping level rises above x = 0.1. X-ray photoelectron spectroscopy measurements show that Br has successfully replaced I and bonds with Pb2+ after CsBr doping. At the optimized doping level of x = 0.1, the incorporation of CsBr in the reaction system can improve the morphology of perovskite films and greatly enhance the efficiency from 9.8% for undoped sample to 13.6%, better than single Br or Cs+ doping. Our result shows that CsBr doping is an effective method to enhance the efficiency of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kim YH, Cho H, Heo JH et al (2015) Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater 27:1248–1254

    Article  Google Scholar 

  2. Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    Article  Google Scholar 

  3. Stranks SD, Eperon GE, Grancini G et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  4. Xing G, Mathews N, Sun S et al (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347

    Article  Google Scholar 

  5. Saliba M, Matsui T, Seo JY et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997

    Article  Google Scholar 

  6. Hao F, Stoumpos CC, Cao DH et al (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photon 8:489–494

    Article  Google Scholar 

  7. Hendon CH, Yang RX, Burton LA et al (2014) Assessment of polyanion (BF4− and PF6−) substitutions in hybrid halide perovskites. J Mater Chem A 3:9067–9070

    Article  Google Scholar 

  8. Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Article  Google Scholar 

  9. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  Google Scholar 

  10. Xiao Z, Bi C, Shao Y et al (2014) Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci 7:2619–2623

    Article  Google Scholar 

  11. Barrows AT, Pearson AJ, Kwak CK et al (2014) Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci 7:2944–2950

    Article  Google Scholar 

  12. Chen Y, Zhao Y, Liang Z (2015) Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chem Mater 27:1448–1451

    Article  Google Scholar 

  13. Zuo CT, Ding LM (2014) An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6:9935–9938

    Article  Google Scholar 

  14. Choi H, Jeong J, Kim HB et al (2014) Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7:80–85

    Article  Google Scholar 

  15. Saliba M, Matsui T, Seo JY et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997

    Article  Google Scholar 

  16. Noh JH, Sang HI, Jin HH et al (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    Article  Google Scholar 

  17. Suarez B, Gonzalez-Pedro V, Ripolles TS et al (2014) Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J Phys Chem Lett 5:1628–1635

    Article  Google Scholar 

  18. Tang S, Deng Y, Zheng X et al (2017) Composition engineering in doctor-blading of perovskite solar cells. Adv Energy Mater 7:1700302-1–1700302-7

    Google Scholar 

  19. Qiu W, Ray A, Jaysankar M et al (2017) An interdiffusion method for highly performing cesium/formamidinium double cation perovskites. Adv Funct Mater 27:1700920-1–1700920-9

    Google Scholar 

  20. Yuan SS, Zhang Y, Liu WQ et al (2014) Efficient inverted organic solar cells using Zn-doped titanium oxide films as electron transport layers. Electrochim Acta 116:442–446

    Article  Google Scholar 

  21. Ahn N, Son DY, Jang IH et al (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J Am Chem Soc 137:8696–8699

    Article  Google Scholar 

  22. Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  Google Scholar 

  23. Zhu W, Bao C, Li F et al (2016) A halide exchange engineering for CH3NH3PbI3−x Br x perovskite solar cells with high performance and stability. Nano Energy 19:17–26

    Article  Google Scholar 

  24. Zhao YX, Zhu K (2013) Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J Phys Chem Lett 4:2880–2884

    Article  Google Scholar 

  25. Niemann RG, Gouda L, Hu J et al (2016) Cs+ incorporation into CH3NH3PbI3 perovskite: substitution limit and stability enhancement. J Mater Chem A 4:17819–17827

    Article  Google Scholar 

  26. NIST X-ray photoelectron spectroscopy database. https://srdata.nist.gov/xps/. Accessed Apr 2017

  27. Tu Y, Wu J, Lan Z et al (2017) Modulated CH3NH3PbI3−x Br x film for efficient perovskite solar cells exceeding 18%. Sci Rep 7:44603-1–44603-8

    Google Scholar 

  28. Atourki L, Vega E, Marí B et al (2016) Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−x Br x (0 ≤ x ≤ 1). Appl Surf Sci 371:112–117

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science of China (Nos. 11674083, 51571083, 11305046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Fan Wang, Zhen-Xiang Cheng or Yuan-Xu Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LY., Zhang, Y., Guan, WB. et al. Large enhanced conversion efficiency of perovskite solar cells by CsBr doping. J Mater Sci 52, 13203–13211 (2017). https://doi.org/10.1007/s10853-017-1429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1429-3

Keywords

Navigation