Skip to main content

Advertisement

Log in

Hybrid materials of graphene anchored with CoFe2O4 for the anode in sodium-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hybrid materials of CoFe2O4 nanoparticles anchored on graphene prepared by a facile hydrothermal process was developed to be anode material for sodium-ion battery. The hybrid nano-structure of CoFe2O4/graphene not only could be useful to buffer electrode volume accompanying with Na+ insertion–extraction, but also could be beneficial to improve electrode electric conductivity and further keep graphene sheet separated to improve ion diffusion rate. Electrochemical measurements showed that the hybrid material anode displayed an excellent performance with a large reversible capacity of 330 mAh g−1 after 75 cycle times and a satisfactory rate capability of 170 mAh g−1 at 1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pan H, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  Google Scholar 

  2. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang CS (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4403

    Google Scholar 

  3. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273

    Article  Google Scholar 

  4. He M, Kravchyk K, Walter M, Kovalenko MV (2014) Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett 14:1255–1262

    Article  Google Scholar 

  5. Yu DYW, Prikhodchenko PV, Mason CW, Batabyal SK, Gun J, Sladkevich S, Medvedev AG, Lev O (2013) High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun 4:2922

    Google Scholar 

  6. Baggetto L, Hah H-Y, Johnson CE, Bridges CA, Johnson JA, Veith GM (2014) The reaction mechanism of FeSb2 as anode for sodium-ion batteries. PCCP 16:9538–9545

    Article  Google Scholar 

  7. Liu J, Wen Y, van Aken PA, Maier J, Yu Y (2014) Facile Synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett 14:6387–6392

    Article  Google Scholar 

  8. Xu Y, Memarzadeh Lotfabad E, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49:8973–8975

    Article  Google Scholar 

  9. Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929

    Article  Google Scholar 

  10. Yang YC, Ji XB, Jing MJ, Hou HS, Zhu YR, Fang LB, Yang XM, Chen QY, Banks CE (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 3:5648–5655

    Article  Google Scholar 

  11. Ming J, Ming H, Yang W, Kwak W-J, Park J-B, Zheng J, Sun YK (2015) A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv 5:8793–8800

    Article  Google Scholar 

  12. Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788

    Article  Google Scholar 

  13. Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481

    Article  Google Scholar 

  14. Wu L, Hu X, Qian J, Pei F, Wu F et al (2013) A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J Mater Chem A 1:7181–7184

    Article  Google Scholar 

  15. Qu B, Ma C, Ji G, Xu C, Xu J, Meng YS, Wang T, Lee JY (2014) Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater 26:3854–3859

    Article  Google Scholar 

  16. Qian J, Wu X, Cao Y, Ai X, Yang H (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed 52:4633–4636

    Article  Google Scholar 

  17. Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou SC, Wang C (2015) Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9:3254–3264

    Article  Google Scholar 

  18. Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11:5421–5425

    Article  Google Scholar 

  19. Wang Y, Mu L, Liu J, Yang Z, Yu X, Gu L, Hu YS, Li H, Yang XQ, Chen LQ, Huang XJ (2015) High capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5:1501005. doi:10.1002/aenm.201501005

    Article  Google Scholar 

  20. Lee HW, Wang RY, Pasta M, Woo Lee S, Liu N, Cui Y (2014) Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun 5:5280

    Article  Google Scholar 

  21. Wu X, Sun M, Guo S, Qian J, Liu Y, Cao YL, Ai X, Yang H (2015) Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. Chem Nano Mater 1:188–193

    Google Scholar 

  22. Park Y, Shin D-S, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 24:3562–3567

    Article  Google Scholar 

  23. Zhu ZQ, Li H, Liang J, Tao ZL, Chen J (2015) The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. Chem Commun 51:1446–1448

    Article  Google Scholar 

  24. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770

    Article  Google Scholar 

  25. Jian Z, Zhao B, Liu P, Li F, Zheng M, Chen M, Shi Y, Zhou H (2014) Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun 50:1215–1217

    Article  Google Scholar 

  26. Liu X, Chen T, Chu H, Niu L, Sun Z, Pan L, Sun CQ (2015) Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166:12–16

    Article  Google Scholar 

  27. Zhang N, Han X, Liu Y, Hu X, Zhao Q, Chen J (2015) 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv Energy Mater 5:1401123. doi:10.1002/aenm.201401123

    Article  Google Scholar 

  28. Hariharan S, Saravanan K, Ramar V, Balaya P (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. PCCP 15:2945–2953

    Article  Google Scholar 

  29. Yu L, Wang LP, Xi S, Yang P, Du Y, Srinivasan M, Xu ZJ (2015) β-FeOOH: an earth-abundant high-capacity negative electrode material for sodium-ion batteries. Chem Mater 27:5340–5348

    Article  Google Scholar 

  30. Koo B, Chattopadhyay S, Shibata T, Prakapenka VB, Johnson CS, Rajh T, Shevchenko EV (2013) Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem Mater 25:245–252

    Article  Google Scholar 

  31. Xu X, Dong B, Ding S, Xiao C, Yu D (2014) Hierarchical NiCoO2 nanosheets supported on amorphous carbon nanotubes for high-capacity lithium-ion batteries with a long cycle life. J Mater Chem A 2:13069–13074

    Article  Google Scholar 

  32. Chen Y, Zhu J, Qu B, Lu B, Xu Z (2014) Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94

    Article  Google Scholar 

  33. Dong B, Zhang X, Xu X, Gao G, Ding S, Li J, Li B (2014) Preparation of scale-like nickel cobaltite nanosheets assembled on nitrogen-doped reduced graphene oxide for high-performance supercapacitors. Carbon 80:222–228

    Article  Google Scholar 

  34. Ying W, Dawei S, Alison U, Jung-ho A, Guoxiu W (2012) Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 23:055402

    Article  Google Scholar 

  35. Xia H, Zhu D, Fu Y, Wang X (2012) CoFe2O4–graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim Acta 83:166–174

    Article  Google Scholar 

  36. Li ZH, Zhao TP, Zhan XY, Gao DS, Xiao QZ, Lei GT (2010) High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim Acta 55:4594–4598

    Article  Google Scholar 

  37. Guo X, Lu X, Fang X, Mao Y, Wang Z, Chen L, Xu X, Yang H, Liu Y (2010) Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun 12:847–850

    Article  Google Scholar 

  38. Zeng G, Shi N, Hess M, Chen X, Cheng W, Fan T, Niederberger M (2015) A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 9:4227–4235

    Article  Google Scholar 

  39. Mitra S, Veluri PS, Chakraborthy A, Petla RK (2014) Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder. Chem Electro Chem 1:1068–1074

    Google Scholar 

  40. Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208

    Article  Google Scholar 

  41. Chen YX, Chen SP, Zhou ZY, Tian N, Jiang YX, Sun SG, Ding Y, Wang ZL (2009) Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J Am Chem Soc 131:10860–10862

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Basic Research Program of China (Grant No.: 51272176), Key Project of Tianjin Municipal Natural Science Foundation of China (13JCZDJC33900), National Basic Research Program of China (973 Program, 2012CB933600), the Higher School Science and Technology Development Project of Tianjin City (20140310), Academic Innovation Funding of Tianjin Normal University (52XC1410) and the Youth Foundation of Tianjin Normal University (5RL128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, JM., Zhong, XH., Wang, GZ. et al. Hybrid materials of graphene anchored with CoFe2O4 for the anode in sodium-ion batteries. J Mater Sci 52, 3124–3132 (2017). https://doi.org/10.1007/s10853-016-0601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0601-5

Keywords

Navigation