Skip to main content
Log in

Preparation of surface-imprinted microspheres using ionic liquids as novel cross-linker for recognizing an immunostimulating peptide

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, the design and preparation of novel functional materials using biomimetic approaches for the high adsorption and precise selective capture of biomolecules have been actively investigated. In this work, molecularly imprinted microspheres (MIMs) with a homogeneous polymer shell anchored onto SiO2 core particles were successfully synthesized via the surface iniferter-initiated polymerization under room temperature in aqueous media. Herein, a clinically relevant immunostimulating hexapeptide from human casein (IHHC) was chosen as a template. Moreover, a novel double imidazolium dicationic ionic liquid with multiple binding sites was synthesized and used as the cross-linker to improve the recognition performance and enhance the adsorption capacity of MIMs simultaneously. The as-prepared microspheres were characterized through various methods. Results revealed that MIMs not only exhibited excellent selective recognition for IHHC but also possessed a high adsorption capacity through the synergistic effect of directional and non-directional interactions, which demonstrated their potential use in the practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure  2
Figure  3
Figure  4
Figure  5
Figure  6
Figure  7
Figure  8
Figure  9
Figure  10
Figure  11

Similar content being viewed by others

References

  1. Lien S, Lowman HB (2003) Therapeutic peptides. Trends Biotechnol 21:556–562

    Article  Google Scholar 

  2. McKie PM, Schirger JA, Benike SL, Harstad LK, Slusser JP, Hodge DO, Redfield MM, Burnett JC Jr, Chen HH (2016) Chronic subcutaneous brain natriuretic peptide therapy in asymptomatic systolic heart failure. Eur J Heart Fail 18:433–441

    Article  Google Scholar 

  3. Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, SautèsFridman C, Galon C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L (2015) Trial watch: peptide-based anticancer vaccines. OncoImmunology 4:e974411

    Article  Google Scholar 

  4. Wan SH, Mckie PM, Schirger JA, Sluusser JP, Hodge DO, Redfield MM, Burnett JC Jr, Chen HH (2016) Chronic peptide therapy with B-Type natriuretic peptide in patients with preclinical diastolic dysfunction (stage B heart failure). JACC Heart Fail 4:539–547

    Article  Google Scholar 

  5. Sharma P, Singh N, Garg R, Haq W, Dube A (2004) Efficacy of human beta-casein fragment (54–59) and its synthetic analogue compound 89/215 against Leishmania donovani in hamsters. Peptides 25:1873–1881

    Article  Google Scholar 

  6. Rysz J, Redliński A, Mudyna J, Luciak M, Kamiński ZJ (2000) Synthesis and immunomodulatory activity of novel analogues of human beta-casein fragment [54–59]. Acta Pol Pharm 57:11–14

    Google Scholar 

  7. Jaziri M, Migliore-Samour D, Casabianca-Pignède MR, Keddad K, Morgat JL, Jollès P (1992) Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulating peptides from human milk proteins. Biochim Biophys Acta Protein Struct Mol Enzymol 1160:251–261

    Article  Google Scholar 

  8. Thakur D, Saxena R, Singh V, Haq W, Katti SB, Singh BN, Tripathi RK (2012) Human beta casein fragment (54–59) modulates M. bovis BCG survival and basic transcription factor 3 (BTF3) expression in THP-1 cell line. PLoS ONE 7:1602–1603

    Google Scholar 

  9. Gattegno L, Migliore-Samour D, Saffar L, Jollès P (1998) Enhancement of phagocytic activity of human monocytic-macrophagic cells by immunostimulating peptides from human casein. Immunol Lett 18:27–31

    Article  Google Scholar 

  10. Parker F, Miglipore-Samour D, Floc’h F, Zerial A, Werner GH, Jollès J, Casaretto M, Zahn H, Jollès P (1984) Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur J Biochem 145:677–682

    Article  Google Scholar 

  11. Du C, Hu X, Guan P, Gao R, Song R, Li J, Qian L, Zhang N, Guo L (2016) Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide. J Mater Chem B 4:1510–1519

    Article  Google Scholar 

  12. Wulff G, Sarhan A (1972) Use of polymers with enzyme-analogous structures for resolution of racemates. Angew Chem Int Ed Engl 11(4):341–345

    Google Scholar 

  13. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117:7105–7111

    Article  Google Scholar 

  14. Zhang H (2014) Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 55:699–714

    Article  Google Scholar 

  15. Yang S, Zhang X, Zhao W, Sun L, Luo A (2015) Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation. J Mater Sci 17:1–13. doi:10.1007/s10853-015-9423-0

    Google Scholar 

  16. Xu Z, Deng P, Li J, Xu L, Tang S, Zhang F (2016) Construction of imprint sites in mesopores of sba-15 via thiol-ene click reaction. J Mater Sci 51:6295–6308. doi:10.1007/s10853-016-9926-3

    Article  Google Scholar 

  17. Chang L, Wu S, Chen S, Li X (2011) Preparation of graphene oxide–molecularly imprinted polymer composites via atom transfer radical polymerization. J Mater Sci 46:2024–2029. doi:10.1007/s10853-010-5033-z

    Article  Google Scholar 

  18. Wang HJ, Zhou WH, Yin XF, Zhuang ZX, Huang HY (2016) Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J Am Chem Soc 128:15954–15955

    Article  Google Scholar 

  19. Adali-Kaya Z, Tse Sum Bui B, Falcimaigne-Cordin A, Hauptl K (2015) Molecularly imprinted polymer nanomaterials and nanocomposites: atom-transfer radical polymerization with acidic monomers. Angew Chem Int Ed 127:5281–5284

    Article  Google Scholar 

  20. Blas H, Save M, Boissière C, Sanchez C, Charleux B (2011) Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules 44:2577–2588

    Article  Google Scholar 

  21. Silies L, Didzoleit H, Hess C, Stühn B, Andrieu-Brunsen A (2015) Mesoporous thin films, Zwitterionic monomers, and iniferter-initiated polymerization: polymerization in a confined space. Chem Mater 27:1971–1981

    Article  Google Scholar 

  22. Tomé LC, Patinha DJS, Ferreira R, Garcia H, Pereira CS, Freire CS, Rebelo LPN, Marrucho IM (2014) Cholinium-based supported ionic liquid membranes: a sustainable route for carbon dioxide separation. Chemsuschem 7:110–113

    Article  Google Scholar 

  23. Olsson C, Hedlund A, Idström A, Westman G (2014) Effect of methylimidazole on cellulose/ionic liquid solutions and regenerated material therefrom. J Mater Sci 49:3423–3433. doi:10.1007/s10853-014-8052-3

    Article  Google Scholar 

  24. Wang HF, Zhu YZ, Yan XP, Gao RY, Zheng JY (2006) A room temperature ionic liquid (RTIL)—mediated, non-hydrolytic sol-gel methodology to prepare molecularly imprinted, silica-based hybrid monoliths for chiral separation. Adv Mater 18:3266–3270

    Article  Google Scholar 

  25. He C, Long Y, Pan J, Li K, Liu F (2008) Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone. Talanta 74:1126–1131

    Article  Google Scholar 

  26. Qian LW, Hu XL, Guan P, Gao B, Wang D, Wang CL, Li J, Du CB, Song WQ (2014) Thermal preparation of lysozyme-imprinted microspheres by using ionic liquid as a stabilizer. Anal Bioanal Chem 406:7221–7231

    Article  Google Scholar 

  27. Li J, Hu X, Guan P, Zhang X, Qian L, Song R, Du C, Wang C (2015) Preparation of molecularly imprinted polymers using ion-pair dummy template imprinting and polymerizable ionic liquids. RSC Adv 5:62697–62705

    Article  Google Scholar 

  28. Zhang T, Zhang Q, Ge J, Goebl J, Sun M, Yan Y, Liu Y, Chang C, Guo J, Yin Y (2009) A self-templated route to hollow silica microspheres. J Phys Chem C 113:3168–3175

    Article  Google Scholar 

  29. Liang L, Feng X, Liu J, Rieke PC, Fryxell GE (1998) Reversible surface properties of glass plate and capillary tube grafted by photopolymerization of N-isopropylacrylamide. Macromolecules 31:7845–7850

    Article  Google Scholar 

  30. Unger KK, Lork KD, Pfleiderer B, Albert K, Bayer E (1991) Impact of acidic/hydrothermal treatment on pore structural and chromatographic properties of porous silicas: I. The conventional approach. J Chromatogr A 556(1):395–406

    Article  Google Scholar 

  31. Wang Y, Han M, Liu G, Hou X, Huang Y, Wu K, Li C (2015) Molecularly imprinted electrochemical sensing interface based on in situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens Bioelectron 74:792–798

    Article  Google Scholar 

  32. Salian VD, Byrne ME (2013) Living radical polymerization and molecular imprinting: improving polymer morphology in imprinted polymers. Macromol Mater Eng 298:379–390

    Article  Google Scholar 

  33. Seah MP, Brown MT (1999) Validation and accuracy of peak synthesis software for XPS. Appl Surf Sci 144:183–187

    Article  Google Scholar 

  34. Liu W, Koh KL, Lu J, Yang L, Phua S, Kong J, Kong Z, Chen Z, Lu X (2012) Simultaneous catalyzing and reinforcing effects of imidazole-functionalized graphene in anhydride-cured epoxies. J Mater Chem 22:18395–18402

    Article  Google Scholar 

  35. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Chastain J, Minnesota, pp 42–43

    Google Scholar 

  36. Pan J, Yao H, Guan W, Ou H, Huo P, Wang X, Zou X, Li C (2011) Selective adsorption of 2,6-dichlorophenol by surface imprinted polymers using polyaniline/silica gel composites as functional support: equilibrium, kinetics, thermodynamics modeling. Chem Eng J 172:847–855

    Article  Google Scholar 

  37. Yoshimatsu K, Lejeune J, Spivak DA, Ye L (2009) Peptide-imprinted polymer microspheres prepared by precipitation polymerization using a single bi-functional monomer. Analyst 134:719–724

    Article  Google Scholar 

  38. Pan J, Hang H, Dai X, Dai J, Huo P, Yan Y (2012) Switched recognition and release ability of temperature responsive molecularly imprinted polymers based on magnetic halloysite nanotubes. J Mater Chem 22:17167–17175

    Article  Google Scholar 

  39. Tan CJ, Tong YW (2007) The effect of protein structural conformation on nanoparticle molecular imprinting of ribonuclease a using miniemulsion polymerization. Langmuir 23:2722–2730

    Article  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al–Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen M, Wong MW, Gonzalez C, people JA (2003) Gaussian 03, Revision B.05, 2003. Gaussian Inc, Pittsburgh

    Google Scholar 

  41. Tan CJ, Chua HG, Ker KH, Tong YW (2008) Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Anal Chem 80:683–692

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant No. 51433008), and the Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. Z2017047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shichao Ding or Chunbao Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Hu, X., Guan, P. et al. Preparation of surface-imprinted microspheres using ionic liquids as novel cross-linker for recognizing an immunostimulating peptide. J Mater Sci 52, 8027–8040 (2017). https://doi.org/10.1007/s10853-017-1005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1005-x

Keywords

Navigation