Skip to main content
Log in

Controlled synthesis and mechanism of large-area WS2 flakes by low-pressure chemical vapor deposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

WS2 flakes have been grown successfully on SiO2(300 nm)/Si substrate via traditional low-pressure chemical vapor deposition method. We studied the controllable growth of WS2 flakes on three of the growth parameters: the time of S-precursor introduction, the temperature of WO3 precursor and the growth temperature. The as-prepared products were characterized by X-ray photoemission spectroscopy, Raman spectra and atomic force microscopy. It is found that the morphologies of WS2 flakes and the products are highly dependent on the concentration of S-precursor, W-precursor and the ratio of W atoms to S atoms, while large-area WS2 flakes up to 160 μm can be obtained. If the ratio of W/S is ≤1:2, we obtain triangular and hexagonal WS2 flakes. On the contrary, if the ratio of W/S is >1:2, besides WS2 flakes, W nanowires will be formed owing to the superfluous W atoms. This study can provide an important and practical guide to preparing large-area and high-quality two-dimensional transition metal dichalcogenides materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wang X, Feng H, Wu Y et al (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307

    Article  Google Scholar 

  2. Cong C, Shang J, Wu X et al (2014) Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater 2:131–136

    Article  Google Scholar 

  3. Meng L, Zhang Y, Hu S et al (2016) Two dimensional WS2 lateral heterojunctions by strain modulation. Appl Phys Lett 108:263104

    Article  Google Scholar 

  4. Ji Q, Zhang Y, Zhang Y et al (2015) Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem Soc Rev 44:2587–2602

    Article  Google Scholar 

  5. Lv R, Robinson JA, Schaak RE et al (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56–64

    Article  Google Scholar 

  6. Schmidt H, Giustiniano F, Eda G (2015) Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem Soc Rev 44:7715–7736

    Article  Google Scholar 

  7. Suzuki R, Sakano M, Zhang YJ et al (2014) Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat Nanotechnol 9:611–617

    Article  Google Scholar 

  8. He X, Liu F, Hu P et al (2015) Chemical vapor deposition of high-quality and atomically layered ReS2. Small 11:5423–5429

    Article  Google Scholar 

  9. Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  Google Scholar 

  10. Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B. doi:10.1103/PhysRevB.83.245213

    Google Scholar 

  11. Kobayashi Y, Sasaki S, Mori S et al (2015) Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 9:4056–4063

    Article  Google Scholar 

  12. Late DJ, Huang YK, Liu B et al (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891

    Article  Google Scholar 

  13. Huo N, Wei Z, Meng X et al (2015) Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2. J Mater Chem C 3:5467–5473

    Article  Google Scholar 

  14. Duerloo KAN, Li Y, Reed EJ (2014) Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nat Commun. doi:10.1038/ncomms5214

    Google Scholar 

  15. Nayak AP, Yuan Z, Cao B et al (2015) Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 9:9117–9123

    Article  Google Scholar 

  16. Kang KN, Godin K, Yang EH (2015) The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Sci Rep. doi:10.1038/srep13205

    Google Scholar 

  17. Qu J, Peng X, Xiao D et al (2016) Giant spin splitting, strong valley selective circular dichroism and valley-spin coupling induced in silicene. Phys Rev B. doi:10.1103/PhysRevB.94.075418

    Google Scholar 

  18. Yuan H, Liu Z, Xu G et al (2016) Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Lett 16:4738–4745

    Article  Google Scholar 

  19. Fan J, Li T, Djerdj I (2015) Two-dimensional atomic crystals: paving new ways for nanoelectronics. J Electron Mater 44:4080–4097

    Article  Google Scholar 

  20. Zeng H, Liu GB, Dai J et al (2013) Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep. doi:10.1038/srep01608

    Google Scholar 

  21. Xiao D, Liu GB, Feng W et al (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett. doi:10.1103/PhysRevLett.108.196802

    Google Scholar 

  22. Janisch C, Mehta N, Ma D et al (2014) Ultrashort optical pulse characterization using WS2 monolayers. Opt Lett 39:383–385

    Article  Google Scholar 

  23. Janisch C, Wang Y, Ma D et al (2014) Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep. doi:10.1038/srep05530

    Google Scholar 

  24. Rong Y, Fan Y, Koh AL et al (2014) Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 6:12096–12103

    Article  Google Scholar 

  25. Gutiérrez HR, Perea-López N, Elías AL et al (2012) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13:3447–3454

    Article  Google Scholar 

  26. Xiao SL, Yu WZ, Gao SP (2016) Edge preference and band gap characters of MoS2 and WS2 nanoribbons. ACS Nano 653:107–112

    Google Scholar 

  27. Zhang Y, Zhang Y, Ji Q et al (2013) Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7:8963–8971

    Article  Google Scholar 

  28. Gong Y, Lin J, Wang X et al (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13:1135–1142

    Article  Google Scholar 

  29. Sarma PV, Patil PD, Barman PK et al (2016) Controllable growth of few-layer spiral WS2. RSC Adv 6:376–382

    Article  Google Scholar 

  30. Shi J, Ma D, Han GF et al (2014) Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10):10196–10204

    Article  Google Scholar 

  31. Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 9(5):5246–5254

    Article  Google Scholar 

  32. Song JG, Park J, Lee W et al (2013) Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7(12):11333–11340

    Article  Google Scholar 

  33. Berkdemir A, Gutiérrez HR, Botello-Méndez AR et al (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep. doi:10.1038/srep01755

    Google Scholar 

  34. Terrones H, Del Corro E, Feng S et al (2014) New first order Raman-active modes in few layered transition metal dichalcogenides. Sci Rep. doi:10.1038/srep04215

    Google Scholar 

  35. Mitioglu AA, Plochocka P, Deligeorgis G et al (2014) Second-order resonant Raman scattering in single-layer tungsten disulfide WS2. Phys Rev B. doi:10.1103/PhysRevB.89.245442

    Google Scholar 

  36. Su L, Yu Y, Cao L et al (2015) Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res 8(8):2686–2697

    Article  Google Scholar 

  37. Heo H, Sung JH, Jin G et al (2015) Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv Mater 27:3803–3810

    Article  Google Scholar 

  38. Bosi M (2015) Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv 5:75500–75518

    Article  Google Scholar 

  39. Reale F, Sharda K, Mattevi C (2016) From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Appl Mater T3:11–22

    Google Scholar 

  40. Fu Q, Wang W, Yang L et al (2015) Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv 5:15795–15799

    Article  Google Scholar 

  41. Dasgupta NP, Meng X, Elam JW et al (2015) Atomic layer deposition of metal sulfide materials. Acc Chem Res 48:341–348

    Article  Google Scholar 

  42. Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44:2584–2586

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11504180, 11374162, 11404171), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY214149), Natural Science Youth Foundation of Jiangsu Province (BK20130865) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (14KJB430020 and TJ215009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Meng or Xiaohong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Wang, X., Meng, L. et al. Controlled synthesis and mechanism of large-area WS2 flakes by low-pressure chemical vapor deposition. J Mater Sci 52, 7215–7223 (2017). https://doi.org/10.1007/s10853-017-0958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0958-0

Keywords

Navigation