Skip to main content
Log in

Characterization of high quality, monolayer WS2 domains via chemical vapor deposition technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

WS2 flakes have been grown successfully on SiO2 substrate via chemical vapor deposition method by reduction and sulfurization of WO3 using Ar/H2 gas and sulfur evaporated from solid sulfur powder. The prepared samples were characterized by optical microscopy, atomic force microscopy, scanning electron microscopy, Raman spectra and photoluminescence (PL). WS2 monolayers are obtained by extending the growth time. The perfect triangular single-crystalline WS2 flakes with an average length of more than 35 µm were achieved. The sharp PL peak (∼ 1.98 eV) and two distinct Raman peaks (E2g and A1g) with a ∼ 71.5 cm−1 peak split indicating that relatively high quality WS2 crystals with a regular triangle shape can be synthesized. Higher growth time shows larger triangular-shaped of WS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, Goldberger, progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c

    Article  Google Scholar 

  2. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Natl. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  ADS  Google Scholar 

  3. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of grapheme. Chem. Rev. 110(1), 132–145 (2009). https://doi.org/10.1021/cr900070d

    Article  Google Scholar 

  4. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of grapheme. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  5. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064

    Article  Google Scholar 

  6. Y. Zhang, Y.F. Zhang, Q.Q. Ji, J. Ju, H.T. Yuan, J.P. Shi, T. Gao, D.L. Ma, M.X. Liu, Y.B. Chen, Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013). https://doi.org/10.1021/nn403454e

    Article  Google Scholar 

  7. G. Eda, S.A. Maier, Two-dimensional crystals: managing light for optoelectronics. ACS Nano 7(7), 5660–5665 (2013). https://doi.org/10.1021/nn403159y

    Article  Google Scholar 

  8. W. Zhang, Z. Huang, W. Zhang, Y. Li, Two dimensional semiconductors with possible high room temperature mobility. Nano Res. 7(12), 1731–1737 (2014). https://doi.org/10.1007/s12274-014-0532-x

    Article  Google Scholar 

  9. X. Guo, X. Tong, Y. Wang, C. Chen, G. Jina, X. Guo, High photoelectrocatalytic performance of a MoS2–SiC hybrid structure for hydrogen evolution reaction. J. Mater. Chem. A 1(15), 4657–4661 (2013). https://doi.org/10.1039/c3ta10600d

    Article  Google Scholar 

  10. D. Raichman, D.A. Strawser, J.P. Lellouche, Covalent unctionalization/polycarboxylation of tungsten disulfide inorganic nanotubes (INTs-WS2). Nano Res. 8(5), 1454–1463 (2015). https://doi.org/10.1007/s12274-014-0630-9

    Article  Google Scholar 

  11. C. Ballif, M. Regula, P.E. Schmid, M. Remškar, R. Sanjinés, F. Lévy, Preparation and characterization of highly oriented, photoconducting WS2 thin films. Appl. Phys. A 62(6), 543–546 (1996). https://doi.org/10.1007/BF01571690

    Article  ADS  Google Scholar 

  12. H.R. Gutierrez, N. Perea-López, A. Laura Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2013). https://doi.org/10.1021/nl3026357

    Article  ADS  Google Scholar 

  13. C.L. Choi, J. Feng, Y.G. Li, J. Wu, A. Zak, R. Tenne, H.J. Dai, WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 6, 921–928 (2013). https://doi.org/10.1007/s12274-013-0369-8

    Article  Google Scholar 

  14. J.D. Mehew, S. Unal, E.T. Alonso, G.F. Jones, S.F. Ramadhan, M.F. Craciun, S. Russo, Fast and highly sensitive ionic-polymergated WS2-graphene photodetectors. Adv. Mater. 29(23), 1700222 (2017). https://doi.org/10.1002/adma.201700222C

    Article  Google Scholar 

  15. B.H. Kim, H.H. Gu, Y.J. Yoon, Large-area and low-temperature synthesis of few-layered WS2 films for photodetectors. 2D Mater. (2018). https://doi.org/10.1088/2053-1583/aadef8

    Article  Google Scholar 

  16. H.R. Gutierrez, N. Perea-Lopez, A.L. Elıas et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2012). https://doi.org/10.1021/nl302635

    Article  ADS  Google Scholar 

  17. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013). https://doi.org/10.1021/nn305275h

    Article  Google Scholar 

  18. H. Zeng, G.B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608–1612 (2013). https://doi.org/10.1038/srep01608

    Article  Google Scholar 

  19. T.A. Loh, D.H. Chua, A.T. Wee, One-step synthesis of fewlayer WS2 by pulsed laser deposition. Sci. Rep. 5(18116), 1–9 (2016). https://doi.org/10.1038/srep18116

    Article  Google Scholar 

  20. K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015). https://doi.org/10.1038/nature14417

    Article  ADS  Google Scholar 

  21. D.K. Nandi, U.K. Sen, A. Dhara, S. Mitra, S.K. Sarkar, Intercalation based tungsten disulfide (WS2) Li-ion battery anode grown by atomic layer deposition. RSC Adv. 6(44), 38024–38032 (2016). https://doi.org/10.1039/c6ra00468g

    Article  ADS  Google Scholar 

  22. D. Fu, X. Zhao, Y.Y. Zhang, L. Li, H. Xu, A.R. Jang, S.I. Yoon, P. Song, S.M. Poh, T. Ren, Z. Ding, W. Fu, T.J. Shin, H.S. Shin, S.T. Pantelides, W. Zhou, K.P. Loh, Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139(27), 9392–9400 (2017). https://doi.org/10.1021/jacs.7b05131

    Article  Google Scholar 

  23. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  ADS  Google Scholar 

  24. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w

    Article  ADS  Google Scholar 

  25. M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, R. Kitaura, Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8(8), 8273–8277 (2014). https://doi.org/10.1021/nn503093k

    Article  Google Scholar 

  26. C.X. Cong, J.Z. Shang, X. Wu, B.C. Cao, N. Peimyoo, C.Y. Qiu, L.T. Sun, T. Yu, Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2(2), 131–136 (2013). https://doi.org/10.1002/adom.201300428

    Article  Google Scholar 

  27. Y. Rong, Y. Fan, A.L. Koh, A.W. Robertson, K. He, S. Wang, H. Tan, R. Sinclairc, J.H. Warner, Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 6(20), 12096 (2014). https://doi.org/10.1039/c4nr04091k

    Article  ADS  Google Scholar 

  28. Y. Sheng, H. Tan, X. Wang, J.H. Warner, Hydrogen addition for centimeter-sized monolayer tungsten disulfide continuous films by ambient pressure chemical vapor deposition. Chem. Mater. 29(11), 4904–4911 (2017). https://doi.org/10.1021/acs.chemmater.7b00954

    Article  Google Scholar 

  29. Y. Gao, Y.L. Hong, L.C. Yin, Z. Wu, Z. Yang, M.I. Chen, Z. Liu, T. Ma, D.M. Sun, Z. Ni, X.L. Ma, H.M. Cheng, W. Ren, Ultrafast Growth of High-Quality Monolayer WSe2 on Au. Adv. Mater. 29(29), 1700990–1700998 (2017). https://doi.org/10.1002/adma.201700990

    Article  Google Scholar 

  30. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2013). https://doi.org/10.1021/nl3026357

    Article  ADS  Google Scholar 

  31. Z. Chen, L.W. Wang, Material genome explorations and new phases of two-dimensional MoS2, WS2 and ReS2 monolayers. Chem. Mater. 30, 6242–6248 (2018). https://doi.org/10.1021/acs.chemmater.8b00525

    Article  Google Scholar 

  32. J. Han, R. Fang, L. Zhu, Z. Geng, X. He, CVD growth of monolayer WS2 through controlled growth temperature and time. Ferroelectrics 562(1), 51–57 (2020). https://doi.org/10.1080/00150193.2020.1760592

    Article  Google Scholar 

  33. F. Lan, R. Yang, Y. Xu, S. Qian, S. Zhang, H. Cheng, Y. Zhang, Synthesis of large-scale single-crystalline monolayer WS2 using a semi-sealed method. Nanomaterials 8(2), 100–107 (2018). https://doi.org/10.3390/nano8020100

    Article  Google Scholar 

  34. F. Chen, S. Ding, W.T.A. Su, A feasible approach to fabricate two dimensional WS2 flakes: from monolayer to multilayer. Ceram. Int. 44(18), 22108–22112 (2018). https://doi.org/10.1016/j.ceramint.2018.08.322

    Article  Google Scholar 

  35. A. Molina-Sanchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84(15), 155413 (2011). https://doi.org/10.1103/PhysRevB.84.155413

    Article  ADS  Google Scholar 

  36. N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, T. Yu, Thermal conductivity determination of suspended mono- and bilayer ws2 by Raman spectroscopy. Nano Res. 8(4), 1210–1221 (2015). https://doi.org/10.1007/s12274-014-0602-0

    Article  Google Scholar 

  37. J.H. Parker, D.W. Feldman, M. Ashkin, Raman scattering by silicon and germanium. Phys. Rev. 155(3), 712–714 (1967). https://doi.org/10.1103/physrev.155.712

    Article  ADS  Google Scholar 

  38. K. Uchinokura, T. Sekine, E. Matsuura, Raman scattering by silicon. Solid State Commun. 11(1), 47–49 (1972). https://doi.org/10.1016/0038-1098(72)91127-1

    Article  ADS  Google Scholar 

  39. S. Hussain, M. Farooq Khan, M.A. Shehzad, D. Vikraman, M.Z. Iqbal, D.C. Choi, W. Song, K.S. An, Y. Seo, J. Eom, W.G. Lee, J. Jung, Layer-modulated, wafer scale and continuous ultra-thin WS2 films grown by RF sputtering via post-deposition annealing. J. Mater. Chem. C 4(33), 7846–7852 (2016). https://doi.org/10.1039/c6tc01954d

    Article  Google Scholar 

  40. P.S.G. Anand, P.S. Gaur, S. Sahoo, J.F. Scott, R.S. Katiyar, Electron-phonon interaction and double-resonance raman studies in monolayer ws2. J. Mater. Chem. C 119(9), 5146–5151 (2015). https://doi.org/10.1021/jp512540u

    Article  Google Scholar 

  41. D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazic, M. Gibertini, N. Marzari, O.L. Sanchez, Y.C. Kung, D. Krasnozhon, M.W. Chen et al., Large-area epitaxial monolayer MoS2. ACS Nano 9(4), 4611–4620 (2015). https://doi.org/10.1021/acsnano.5b01281

    Article  Google Scholar 

  42. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, Bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111

    Article  Google Scholar 

  43. Y. Gao, Z. Liu, D.M. Sun, L. Huang, L.P. Ma, L.C. Yin, T. Ma, Z. Zhang, X.L. Ma, L.M. Peng, Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6(1), 8569 (2015). https://doi.org/10.1038/ncomms9569

    Article  ADS  Google Scholar 

  44. L. Liang, V. Meunier, First-principles raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6(10), 5394–5401 (2014). https://doi.org/10.1039/c3nr06906k

    Article  ADS  Google Scholar 

  45. K.N. Kang, K. Godin, E.H. Yang, The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Sci. Rep. 5(1), 1–9 (2015). https://doi.org/10.1038/srep13205

    Article  Google Scholar 

  46. H. Peng, W. Dang, J. Cao, Y.L. Chen, D. Wu, W.S. Zheng, H. Li, Z.X. Shen, Z.F. Liu, Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 4(4), 281–286 (2012). https://doi.org/10.1038/nchem.1277

    Article  Google Scholar 

  47. H. Tan, W. Xu, Y. Sheng, C.S. Lau, Y. Fan, Q. Chen, M. Tweedie, X. Wang, Y. Zhou, J.H. Warner, Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv. Mater. 29(46), 1702917–1702925 (2017). https://doi.org/10.1002/adma.20170291

    Article  Google Scholar 

  48. W. Zhao, R. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. Castro Neto, G. Eda, Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13(11), 5627–5634 (2013). https://doi.org/10.1021/nl403270k

    Article  ADS  Google Scholar 

  49. S. Wang, M. Pacios, H. Bhaskaran, J.H. Warner, Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology 27(8), 085604–085613 (2016). https://doi.org/10.1088/0957-4484/27/8/085604

    Article  ADS  Google Scholar 

  50. J. Park, W. Lee, T. Choi, S.H. Hwang, J.M. Myoung, J.H. Jung, S.H. Kimc, H. Kim, Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Nanoscale 7(4), 1308–1313 (2015). https://doi.org/10.1039/c4nr04292a

    Article  ADS  Google Scholar 

  51. K.M. McCreary, A.T. Hanbicki, G.G. Jernigan, J.C. Culbertson, B.T. Jonker, Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 6(1), 1–7 (2016). https://doi.org/10.1038/srep19159

    Article  Google Scholar 

  52. A. Matthäus, A. Ennaoui, S. Fiechter, S. Tiefenbacher, T. Kiesewetter, K. Diesner, I. Sieber, W. Jaegermann, T. Tsirlina, R. Tenne, Highly textured films of layered metal disulfide 2H-WS2 preparation and optoelectronic properties. J. Electron. Mater. 144(3), 1013–1019 (1997). https://doi.org/10.1149/1.1837522

    Article  Google Scholar 

  53. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615 (2013). https://doi.org/10.1021/nl4007479

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank from West Tehran Branch Azad University for financial support of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Asgary.

Ethics declarations

Conflict of interest

Authors have not any conflict of interest that may have influenced either the conduct or the presentation of the research to the editors.

Ethical approval

Our paper is just a research paper on nanostructure material and has no ethical problem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgary, S., Ramezani, A.H. & Ebrahimi Nejad, Z. Characterization of high quality, monolayer WS2 domains via chemical vapor deposition technique. Appl. Phys. A 128, 139 (2022). https://doi.org/10.1007/s00339-022-05270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05270-0

Keywords

Navigation