Skip to main content
Log in

Effect of extrusion temperature on microstructure and tensile properties of Mg–Gd–Er–Zn–Zr alloy containing LPSO phase

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The Mg–1Gd–0.75Er–0.5Zn–0.18Zr (at.%) alloy with long-period stacking ordered (LPSO) phase was prepared by metal mold casting and hot extrusion. The extruded samples had a typical bimodal microstructure. The different fractions of equiaxed grains were observed in annealed samples. The percentage of fine grains decreased in the extruded Mg alloys with and without annealing treatment when the extrusion temperature was increased. The LPSO phases promote recrystallization behavior in the samples through particle-stimulated nucleation (PSN) mechanism. The Mg alloys extruded at 300 °C with or without annealing treatment obtained the best tensile properties. At the low extrusion temperature, more finely equiaxed grains with random texture are formed through PSN, and more LPSO phase kink bands are formed, which could improve the mechanical properties of the extruded Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Arruebarrena, I. Hurtado, J. Väinölä, G. C. Cingi, S. Dévényi, J. Townsend, S. Mahmood, A. Wendt, K. Weiss, A. Ben-Dov, Adv. Eng. Mater. 9 (2007) 751–756.

    Article  Google Scholar 

  2. T.M. Pollock, Science 328 (2010) 986–987.

    Article  Google Scholar 

  3. M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59 (2011) 3646–3658.

    Article  Google Scholar 

  4. D. Han, H. Chen, Q. Zang, Y. Qian, H. Cui, L. Wang, J. Zhang, Y. Jin, Mater. Charact. 163 (2020) 110295.

    Article  Google Scholar 

  5. K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, T. Nakano, Acta Mater. 163 (2019) 226–239.

    Article  Google Scholar 

  6. B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37–45.

    Article  Google Scholar 

  7. F.H. Froes, D. Eliezer, E. Aghion, JOM 50 (1998) 30–34.

    Article  Google Scholar 

  8. L. Zheng, C. Liu, Y. Wan, P. Yang, X. Shu, J. Alloy. Compd. 509 (2011) 8832–8839.

    Article  Google Scholar 

  9. Y. Guo, X. He, Y. Dai, Q. Zang, X. Dong, Z. Zhang, Mater. Sci. Eng. A 858 (2022) 144136.

    Article  Google Scholar 

  10. R. Zhen, Y. Sun, F. Xue, J. Sun, J. Bai, J. Alloy. Compd. 550 (2013) 273–278.

    Article  Google Scholar 

  11. S.M. Ramezani, A. Zarei-Hanzaki, H.R. Abedi, A. Salandari-Rabori, P. Minarik, J. Alloy. Compd. 793 (2019) 134–145.

    Article  Google Scholar 

  12. D. Zhang, Z. Tan, Q. Huo, Z. Xiao, Z. Fang, X. Yang, Mater. Sci. Eng. A 715 (2018) 389–403.

    Article  Google Scholar 

  13. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105 (2016) 479–494.

    Article  Google Scholar 

  14. Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Scripta Mater. 55 (2006) 453–456.

    Article  Google Scholar 

  15. D. Wang, Z. Du, H. Zhang, Rare Met. Mater. Eng. 47 (2018) 3345–3352.

    Google Scholar 

  16. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58 (2010) 6282–6293.

    Article  Google Scholar 

  17. T. Morikawa, K. Kaneko, K. Higashida, D. Kinoshita, M. Takenaka, Y. Kawamura, Mater. Trans. 49 (2008) 1294–1297.

    Article  Google Scholar 

  18. X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater. 58 (2010) 4760–4771.

    Article  Google Scholar 

  19. E. Oñorbe, G. Garcés, P. Pérez, P. Adeva, J. Mater. Sci. 47 (2012) 1085–1093.

    Article  Google Scholar 

  20. H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang, A. Ma, J. Alloy. Compd. 704 (2017) 509–517.

    Article  Google Scholar 

  21. J.J. Zong, J. Zhao, X.D. Wang, P.F. An, J. Zhang, T.D. Hu, Q.P. Cao, D.X. Zhang, B. Jiang, J.Z. Jiang, Scripta Mater. 195 (2021) 113720.

    Article  Google Scholar 

  22. Z. Yu, C. Xu, J. Meng, X. Zhang, S. Kamado, Mater. Sci. Eng. A 713 (2018) 234–243.

    Article  Google Scholar 

  23. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.

    Article  Google Scholar 

  24. Z. Yu, C. Xu, J. Meng, X. Zhang, S. Kamado, J. Alloy. Compd. 729 (2017) 627–637.

    Article  Google Scholar 

  25. M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Scripta Mater. 53 (2005) 799–803.

    Article  Google Scholar 

  26. J. Humphreys, G.S. Rohrer, A. Rollett, Recrystallization and related annealing phenomena, Amsterdam, Elsevier, 2017.

    Google Scholar 

  27. M. Matsuda, S. Li, Y. Kawamura, Y. Ikuhara, M. Nishida, Mater. Sci. Eng. A 393 (2005) 269–274.

    Article  Google Scholar 

  28. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 547 (2012) 93–98.

    Article  Google Scholar 

  29. T. Homma, N. Kunito, S. Kamado, Scripta Mater. 61 (2009) 644–647.

    Article  Google Scholar 

  30. J.X. Yi, B.Y. Tang, P. Chen, D.L. Li, L.M. Peng, W.J. Ding, J. Alloy. Compd. 509 (2011) 669–674.

    Article  Google Scholar 

  31. F. Shi, N. Piao, H. Wang, J. Wang, Q. Zang, Y. Guo, C. Chen, L. Zhang, J. Mater. Res. Technol. 25 (2023) 799–811.

    Article  Google Scholar 

  32. F.J. Humphreys, P.N. Kalu, Acta Metall. 35 (1987) 2815–2829.

    Article  Google Scholar 

  33. C. Xu, T. Nakata, X. Qiao, M. Zheng, K. Wu, S. Kamado, Sci. Rep. 7 (2017) 40846.

    Article  Google Scholar 

  34. M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Mater. Sci. Forum 654–656 (2010) 615–618.

    Article  Google Scholar 

  35. H. Somekawa, D. Ando, K. Hagihara, M. Yamasaki, Y. Kawamura, Mater. Charact. 179 (2021) 111348.

    Article  Google Scholar 

  36. K. Higashida, J. Takamura, N. Narita, Mater. Sci. Eng. 81 (1986) 239–258.

    Article  Google Scholar 

  37. H. Somekawa, C.A. Schuh, Metall. Mater. Trans. A 47 (2016) 3227–3234.

    Article  Google Scholar 

  38. H. Gao, K.I. Ikeda, T. Morikawa, K. Higashida, H. Nakashima, Mater. Lett. 146 (2015) 30–33.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX21_1764), Department Education of Jiangsu Province (No. 22KJB430003) and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110394).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian-hao Zang or Hong-mei Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ss., Zang, Qh., Chen, Hm. et al. Effect of extrusion temperature on microstructure and tensile properties of Mg–Gd–Er–Zn–Zr alloy containing LPSO phase. J. Iron Steel Res. Int. 30, 1633–1641 (2023). https://doi.org/10.1007/s42243-023-01030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01030-3

Keywords

Navigation