Skip to main content
Log in

Evaluation of artificial skin made from silkworm cocoons

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The protective characteristics of silkworm cocoons are the result of thousands of years of evolution. In this study, we attempted to combine the cocoon’s protective characteristics with the function of human skin to explore the possibility of using silkworm cocoons in the field of artificial skin application. We retained the natural structure of the cocoon shells and softened it by a degumming process. This process was performed so that the mechanical and permeation properties of the cocoon material meet the criteria of artificial skin with respect to tension and suturing; the cocoon material was also found to have strong antibacterial activity and cell compatibility. These properties of the cocoon suggest that it has a high potential to be used as an artificial skin. Overall, we expect the silkworm cocoon to be a type of biological material with extensive possibilities of application as artificial skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akturk O, Tezcaner A, Bilgili H, Deveci MS, Gecit MR, Keskin D (2011) Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 112:279–288

    Article  Google Scholar 

  2. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  Google Scholar 

  3. Arai T, Freddi G, Innocenti R, Tsukada M (2004) Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci 91:2383–2390

    Article  Google Scholar 

  4. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211

    Article  Google Scholar 

  5. Chen FJ, Porter D, Vollrath F (2012) Morphology and structure of silkworm cocoons. Mater Sci Eng C Mater Biol Appl 32:772–778

    Article  Google Scholar 

  6. Chen FJ, Porter D, Vollrath F (2012) Silk cocoon (Bombyx mori): multi-layer structure and mechanical properties. Acta Biomater 8:2620–2627

    Article  Google Scholar 

  7. Chen X, Shao ZZ, Marinkovic NS, Miller LM, Zhou P, Chance MR (2001) Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved ftir spectroscopy. Biophys Chem 89:25–34

    Article  Google Scholar 

  8. Cua AB, Wilhelm KP, Maibach HI (1990) Elastic properties of human skin—relation to age, sex, and anatomical region. Arch Dermatol Res 282:283–288

    Article  Google Scholar 

  9. Cui XD, Wen JC, Zhao X, Chen X, Shao ZZ, Jiang JJ (2013) A pilot study of macrophage responses to silk fibroin particles. J Biomed Mater Res Part A 101:1511–1517

    Article  Google Scholar 

  10. Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    Article  Google Scholar 

  11. Daly CH, Odland GF (1979) Age-related-changes in the mechanical-properties of human-skin. J Invest Dermatol 73:84–87

    Article  Google Scholar 

  12. Dash R, Mukherjee S, Kundu SC (2006) Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int J Biol Macromol 38:255–258

    Article  Google Scholar 

  13. Doakhan S, Montazer M, Rashidi A, Moniri R, Moghadam MB (2013) Influence of sericin/TiO2 nanocomposite on cotton fabric: part 1. enhanced antibacterial effect. Carbohydr Polym 94:737–748

    Article  Google Scholar 

  14. Dureja H, Tiwary AK, Gupta S (2001) Simulation of skin permeability in chitosan membranes. Int J Pharm 213:193–198

    Article  Google Scholar 

  15. Fei X, Jia MH, Du X, Yang YH, Zhang R, Shao ZZ, Zhao X, Chen X (2013) Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules 14:4483–4488

    Article  Google Scholar 

  16. Freddi Giuliano, Mossotti Raffaella, Innocenti Riccardo (2003) Degumming of silk fabric with several proteases. J Biotechnol 106:101–112

    Article  Google Scholar 

  17. Fu LN, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442

    Article  Google Scholar 

  18. Godbey WT, Atala A (2002) In vitro systems for tissue engineering. Ann N Y Acad Sci 961(1):10–26

    Article  Google Scholar 

  19. Gschwandtner M, Mildner M, Mlitz V, Gruber F, Eckhart L, Werfel T, Gutzmer R, Elias PM, Tschachler E (2013) Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy 68:37–47

    Article  Google Scholar 

  20. Hou HY, Fu SH, Liu CH, Chen JP, Hsu BRS (2014) The graft survival protection of subcutaneous allogeneic islets with hydrogel grafting and encapsulated by Ctla4ig and Il1ra. Polym J 46:136–144

    Article  Google Scholar 

  21. Huang SQ, Zhao HP, Feng XQ, Cui W, Lin Z, Xu MQ (2008) Mechanical properties of cocoons constructed consecutively by a single silkworm caterpillar, Bombyx mori. Acta Mech Sin 24:151–160

    Article  Google Scholar 

  22. Hurt AP, Getti G, Coleman NJ (2014) Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration. Int J Biol Macromol 64:11–16

    Article  Google Scholar 

  23. Jiang CY, Wang XY, Gunawidjaja R, Lin YH, Gupta MK, Kaplan DL, Naik RR, Tsukruk VV (2007) Mechanical properties of robust ultrathin silk fibroin films. Adv Funct Mater 17:2229–2237

    Article  Google Scholar 

  24. Kannon GA, Garrett AB (1995) Moist wound-healing with occlusive dressings—a clinical review. Dermatol Surg 21:583–590

    Google Scholar 

  25. Kim J, Kwon MY, Kim S (2016) Biological degumming of silk fabrics with proteolytic enzymes. J Nat Fibers 13:629–639

    Google Scholar 

  26. Kweon H, Ha HC, Um IC, Park YH (2001) Physical properties of silk fibroin/chitosan blend films. J Appl Polym Sci 80:928–934

    Article  Google Scholar 

  27. Lan G, Bitao L, Wang T, Wang L, Chen J, Yu K, Liu J, Dai F, Wu D (2015) Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids Surf B 136:1026–1034

    Article  Google Scholar 

  28. Li BC, Zhang SQ, Dan WB, Chen YQ, Cao P (2007) Expression in Escherichia coli and purification of bioactive antibacterial peptide Abp-Cm4 from the Chinese silk worm, Bombyx mori. Biotechnol Lett 29:1031–1036

    Article  Google Scholar 

  29. Li CM, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2006) Electrospun silk-Bmp-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124

    Article  Google Scholar 

  30. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28:5271–5279

    Article  Google Scholar 

  31. Mao JS, Zhao LG, de Yao K, Shang QX, Yang GH, Cao YL (2003) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res Part A 64A:301–308

    Article  Google Scholar 

  32. Martínez-Mora C, Mrowiec A, García-Vizcaíno EM, Alcaraz A, Cenis JL, Nicolás FJ (2012) Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS One 7(7):e42271

    Article  Google Scholar 

  33. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5:77873–77884

    Article  Google Scholar 

  34. Muangman P, Engrav LH, Heimbach DM, Harunari N, Honari S, Gibran NS, Klein MB (2006) Complex wound management utilizing an artificial dermal matrix. Ann Plast Surg 57:199–202

    Article  Google Scholar 

  35. Nanchahal J, Ward CM (1992) New grafts for old: a review of alternatives to autologous skin. Br J Plast Surg 45:354–363

    Article  Google Scholar 

  36. Numata K, Kaplan DL (2010) Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 62:1497–1508

    Article  Google Scholar 

  37. Ozdemir KG, Yilmaz H, Yilmaz S (2009) In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by Mtt assay. J Biomed Mater Res Part B Appl Biomater 90B:82–86

    Article  Google Scholar 

  38. Ruszczak Z (2003) Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev 55:1595–1611

    Article  Google Scholar 

  39. Scotchford CA, Cascone MG, Downes S, Giusti P (1998) Osteoblast responses to collagen-PVA bioartificial polymers in vitro: the effects of cross-linking method and collagen content. Biomaterials 19:1–11

    Article  Google Scholar 

  40. Takasu Y, Yamada H, Tsubouchi K (2002) Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 66:2715–2718

    Article  Google Scholar 

  41. Teramoto H, Kameda T, Tamada Y (2008) Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci Biotechnol Biochem 72:3189–3196

    Article  Google Scholar 

  42. Venugopal J, Ramakrishna S (2005) Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 11:847–854

    Article  Google Scholar 

  43. Wang SF, Shen L, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072

    Article  Google Scholar 

  44. Wang X, Qiu Y, Carr AJ, Triffitt JT, Sabokbar A, Xia Z (2011) Improved human tenocyte proliferation and differentiation in vitro by optimized silk degumming. Biomed Mater 6(3):035010

    Article  Google Scholar 

  45. Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, Shi M, Bian Z, Liu Z, Kim Y-S, Yeo W-H, Park JS, Song J, Li Y, Huang Y, Gorbach AM, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:78–1078

    Google Scholar 

  46. Zhang J, Kaur J, Rajkhowa R, Li JL, Liu XY, Wang XG (2013) Mechanical properties and structure of silkworm cocoons: a comparative study of Bombyx mori, Antheraea assamensis, Antheraea pernyi and Antheraea mylitta silkworm cocoons. Mater Sci Eng C Mater Biol Appl 33:3206–3213

    Article  Google Scholar 

  47. Zhang J, Rajkhowa R, Li JL, Liu XY, Wang XG (2013) Silkworm cocoon as natural material and structure for thermal insulation. Mater Des 49:842–849

    Article  Google Scholar 

  48. Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 20:91–100

    Article  Google Scholar 

  49. Zhao HP, Feng XQ, Yu SW, Cui WZ, Zou FZ (2005) Mechanical properties of silkworm cocoons. Polymer 46:9192–9201

    Article  Google Scholar 

  50. Zhao R, Li X, Sun BL, Zhang Y, Zhang DW, Tang ZH, Chen XS, Wang C (2014) Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol 68:92–97

    Article  Google Scholar 

  51. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:510–525

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Hi-Tech Research and Development 863 Program of China Grant (No. 2013AA102507). This work was also supported by the Fundamental Research Funds for the Central Universities (XDJK2014B004, XDJK2014A011, XDJK2013C162, SWU116030, SWU116031) and the Science and technology basic condition construction project of Guangdong Province (No. 2015A030303010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayang Wu.

Additional information

Kun Yu and Guangqian Lan have contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Lan, G., Lu, B. et al. Evaluation of artificial skin made from silkworm cocoons. J Mater Sci 52, 5435–5448 (2017). https://doi.org/10.1007/s10853-017-0788-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0788-0

Keywords

Navigation