Skip to main content
Log in

Molten-salt synthesis of Cu–SrTiO3/TiO2 nanotube heterostructures for photocatalytic water splitting

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of Cu-loaded SrTiO3/TiO2 nanotube heterostructures were synthesized by a facile molten salts method and an impregnation-calcination method. Through adjusting the molar ratio of Sr/Ti, the photocatalytic performance of the samples changed regularly. When Sr/Ti = 0.2, the catalyst showed the highest performance in water splitting and the H2 generation amount was 0.597 mmol under UV irradiation for 8 h. The enhanced performance of Cu-loaded SrTiO3/TiO2 nanotubes could be attributed to the heterostructures, the small crystallite size, and the reduced band gap inside them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. International energy agency in world energy outlook 2011 (2011) http://www.worldenergyoutlook.org

  2. Gust D, Moore TA, Moore AL (2001) Mimicking photo synthetic solar energy transduction. Acc Chem Res 34(1):40–48

    Article  Google Scholar 

  3. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103(43):15729–15735

    Article  Google Scholar 

  4. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860

    Article  Google Scholar 

  5. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  Google Scholar 

  6. Sun T, Liu EZ, Liang XH, Hu XY, Fan J (2015) Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Appl Surf Sci 347:696–705

    Article  Google Scholar 

  7. Mali MG, An S, Liou M, Al-Deyab SS, Yoon SS (2015) Photoelectrochemical solar water splitting using electrospun TiO2 nanofibers. Appl Surf Sci 328:109–114

    Article  Google Scholar 

  8. Yue XY, Zhang JY, Yan FP, Wang X, Huang F (2014) A situ hydrothermal synthesis of SrTiO3/TiO2 heterostructure nanosheets with exposed (001) facets for enhancing photocatalytic degradation activity. Appl Surf Sci 319:68–74

    Article  Google Scholar 

  9. Zheng YH, Zheng LR, Zhan YY, Lin XY, Zheng Q, Wei KM (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem 46(17):6980–6986

    Article  Google Scholar 

  10. Xiao FX (2012) Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl Mater Interfaces 4(12):7055–7063

    Article  Google Scholar 

  11. Zhou WJ, Yin ZY, Du YP, Huang X, Zeng ZY, Fan ZX, Liu H, Wang JY, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1):140–147

    Article  Google Scholar 

  12. Amirav L, Alivisatos AP (2010) Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett 1(7):1051–1054

    Article  Google Scholar 

  13. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  14. Fujishima A, Honda K (1971) Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull Chem Soc Jpn 44(4):1148–1150

    Article  Google Scholar 

  15. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  Google Scholar 

  16. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  Google Scholar 

  17. Linsebigler L, Lu GQ, Yates TJ (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  Google Scholar 

  18. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Article  Google Scholar 

  19. Yoko T, Yuasa A, Kamia K, Sakka SJ (1991) Sol-gel-derived TiO2 film semiconductor electrode for photocleavage of water preparation and effects of post heating treatment on the photoelectron chemical behaviour. Electrochem Soc 138(8):2279–2285

    Article  Google Scholar 

  20. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68

    Article  Google Scholar 

  21. Aurian-Blajeni B, Halman M, Manassen JJ (1980) Photo reduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol Energy 25(2):165–170

    Article  Google Scholar 

  22. Cristiani C, Belloto M, Forzatti P, Bregani F (1993) On the morphological properties of tungsta-titania de-NOxing catalysts. J Mater Res 8(8):2019–2025

    Article  Google Scholar 

  23. Anderson S, Collen B, Kuylenstierna U, Magnelli A (1957) Phase analysis studies on the titanium-oxygen system. Acta Chem Scand 11(10):1641–1652

    Article  Google Scholar 

  24. Moreno J, Dominguez JM, Montoya A, Vicente L, Viveros T (1995) Synthesis and characterization of MTiO3 (M = Mg, Ca, Sr, Ba) sol-gel. J Mater Chem 5(3):509–512

    Article  Google Scholar 

  25. Domen K, Kudo A, Onishi T (1986) Photocatalytic decomposition of water into H2 and O2, over NiO-SrTiO3, powder. 1. Structure of the catalyst. J Phys Chem 90(2):292–295

    Article  Google Scholar 

  26. Ahuja S, Kutty TRN (1996) Nanoparticles of SrTiO3 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol. J Photochem Photobiol A 97(1–2):99–107

    Article  Google Scholar 

  27. Diamant Y, Chen SG, Melamed O, Zaban A (2003) Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J Phys Chem B 107(9):1977–1981

    Article  Google Scholar 

  28. Zhang J, Bang JH, Tang CC, Kamat PV (2010) Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1):387–395

    Article  Google Scholar 

  29. Cao TP, Li YJ, Wang CH, Shao CL, Liu YC (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6):2946–2952

    Article  Google Scholar 

  30. Zhong YQ, Ueno K, Mori Y, Oshikiri T, Misawa H (2015) Plasmon-enhanced water splitting utilizing the heterojunction synergistic effect between SrTiO3 and rutile-TiO2. Chem Lett 44(5):618–620

    Article  Google Scholar 

  31. Matsui N, Anzai K, Akamatsu N, Nakagawa K, Ikenaga N, Suzuki T (1999) Reaction mechanisms of carbon dioxide reforming of methane with Ru-loaded lanthanum oxide catalyst. Appl Catal A 179(1–2):247–256

    Article  Google Scholar 

  32. Subramanian V, Roeder RK, Wolf EE (2006) Synthesis and UV-visible-light photoactivity of noble-metal-SrTiO3 composites. Ind Eng Chem Res 45(7):2187–2193

    Article  Google Scholar 

  33. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectronchemical water splitting. Chem Soc Rev 43:7520–7535

    Article  Google Scholar 

  34. Ikeda S, Hirao K, Ishino S, Matsumura M, Ohtani B (2006) Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system. Catal Today 117(1–3):343–349

    Article  Google Scholar 

  35. Lo CC, Huang CW, Liao CH, Wu JCS (2010) Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int J Hydrog Energy 35(4):1523–1529

    Article  Google Scholar 

  36. Yan JH, Zhu YR, Tang YG, Zheng SQ (2009) Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation. J Alloy Compd 472(1–2):429–433

    Article  Google Scholar 

  37. Bui DN, Mu J, Wang L, Kang SZ, Li XQ (2013) Preparation of Cu-loaded SrTiO3 nanoparticles and their photocatalytic activity for hydrogen evolution from methanol aqueous solution. Appl Surf Sci 274:328–333

    Article  Google Scholar 

  38. Yu WW, Yuan SJ, Li YG, Zhang QH, Wang HZ (2011) Preparation of TiO2 nanoparticle/nanotube composites via a vapor hydrolysis method and their photocatalytic activities. ISRN Nanotechnol. doi:10.5402/2011/582534

    Google Scholar 

  39. Wang TX, Liu SZ, Chen J (2011) Molten salt synthesis of SrTiO3 nanocrystals using nanocrystalline TiO2 as a precursor. Powder Technol 205(1–3):289–291

    Article  Google Scholar 

  40. Jin ZL, Zhang XJ, Li YX, Li SB, Lu GX (2007) 5.1 % apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8(8):1267–1273

  41. Li LK, Xu LL, Shi WD, Guan JG (2013) Facile preparation and size-dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution. Int J Hydrog Energy 38(2):816–822

    Article  Google Scholar 

  42. Bandara J, Udawatta CPK, Rajapakse CSK (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4:857–861

    Article  Google Scholar 

  43. Pu SB, Inui T (1996) Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylnaphthalene isomerization. Zeolites 17(4):334–339

    Article  Google Scholar 

  44. Kim DS, Han SJ, Kwak SY (2007) Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J Colloid Interfaces Sci 316(1):85–91

    Article  Google Scholar 

  45. Zhang Y, Lin S, Zhang W, Ge H, Li G, Zhang Y, Qi FY, Song XM (2014) Synthesis of a tailored SrTiO3-TiO2 microspherical photocatalyst and its photo generated charge properties. RSC Adv 4:3226–3232

    Article  Google Scholar 

  46. Akdogan EK, Brennan RE, Allahverdi M, Safari A (2006) Effects of molten salt synthesis (MSS) parameters on the morphology of Sr3Ti2O7 and SrTiO3 seed crystals. J Electroceram 16(2):159–165

    Article  Google Scholar 

  47. Li HL, Du ZN, Wang GL, Zhang YC (2010) Low temperature molten salt synthesis of SrTiO3 submicron crystallites and nanocrystals in the eutectic NaCl-KCl. Mater Lett 64(3):431–434

    Article  Google Scholar 

  48. Cai Z, Xing X, Li L, Xu Y (2008) Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders. J Alloy Compd 454(1–2):466–470

    Article  Google Scholar 

  49. Essick JM, Mather RT (1993) Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment. Am J Phys 61(7):646–649

    Article  Google Scholar 

  50. Mártil I, Gonzales Días G (1992) Undergraduate laboratory experiment: measurement of the complex refractive index and the band gap of a thin film semiconductor. Am J Phys 60(83):83–86

    Article  Google Scholar 

  51. Sconza A, Torzo G (1994) Spectroscopic measurement of the semiconductor energy gap. Am J Phys 62(8):732–737

    Article  Google Scholar 

  52. Huang H, Yue ZK, Song YJ, Du YK, Yang P (2012) Mesoporous tungsten oxides as photocatalysts for O2 evolution under irradiation of visible light. Mater Lett 88:57–60

    Article  Google Scholar 

  53. Wang JP, Wang ZY, Huang BB, Ma YD, Liu YY, Qin XY, Zhang XY, Dai Y (2012) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Inter 4(8):4024–4030

    Article  Google Scholar 

  54. Zhou J, Yin L, Li HR, Liu ZY, Wang JX, Duan K, Qu SX, Weng J, Feng B (2015) Heterojunction of SrTiO3/TiO2 nanotubes with dominant (001) facets: synthesis, formation mechanism and photoelectrochemical properties. Mat Sci Semicond Proc 40:107–116

    Article  Google Scholar 

  55. Teng F, Chen MD, Li N, Hua X, Wang K, Xu TG (2014) Effect of TiO2 surface structure on the hydrogen production activity of the Pt@CuO/TiO2 photocatalysts for water splitting. ChemCatChem 6(3):842–847

    Article  Google Scholar 

  56. Ng JW, Xu SP, Zhang XW, Yang HY, Sun DD (2010) Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Funct Mater 20(24):4287–4294

    Article  Google Scholar 

  57. Maeda K (2013) Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3(7):1486–1503

    Article  Google Scholar 

  58. Li YY, Wang JS, Yao HC, Dang LY, Li ZJ (2011) Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal Commun 12(7):660–664

    Article  Google Scholar 

  59. Li X, Zhu J, Li HX (2012) Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS. Appl Catal B 123–124:174–181

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the program for young scientists (YangFan Program, 14YF1410800) at Science and Technology Commission of Shanghai Municipality, young teachers training scheme of Shanghai Municipal Education Commission (ZZyy15085, ZZyy15086), the program of introducing talents of Shanghai Institute of Technology (YJ2014-42), and the special fund to support the development of local colleges of Ministry of Finance of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Li, C., Ha, M.N. et al. Molten-salt synthesis of Cu–SrTiO3/TiO2 nanotube heterostructures for photocatalytic water splitting. J Mater Sci 51, 4639–4649 (2016). https://doi.org/10.1007/s10853-016-9779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9779-9

Keywords

Navigation