Skip to main content
Log in

A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Our purpose was to improve the thermal, mechanical and optimal properties of an epoxy bioresin using optimum hybrid natural pigments previously synthesised in our lab. Next, we searched for the best combinations of factors in the synthesis of natural hybrid nanopigments and then incorporated them into the bioresin. We combined three structural modifiers in the nanopigment synthesis, surfactant, coupling agent (silane) and a mordant salt (alum), selected to replicate mordant textile dyeing with natural dyes. We used Taguchi’s design L8 to seek final performance optimisation. We selected three natural dyes, chlorophyll, beta-carotene and beetroot extract, and used two laminar nanoclay types, montmorillonite and hydrotalcite. The thermal, mechanical and colorimetric characterisation of the composite obtained by mixing natural hybrid nanopigments (bionanocomposite) was made. The natural dye interactions with both nanoclays improved the thermal stabilities, colour performance and UV–VIS light exposure stability of natural dyes and bioresins. The best bionanocomposite materials were found in an acidic pH [3, 4] environment and by modifying nanoclays with mordant and surfactant during the nanopigment synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Abbreviations

CPB:

Cetylpyridinium bromide

SDS:

Sodium dodecyl sulphate

MORD:

Alum

M:

Montmorillonite

H:

Hydrotalcite

RES:

Epoxy bio resin

NO:

Natural orange

NR:

Natural red

NG:

Natural green

References

  1. Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70(10):1557–1563. doi:10.1016/j.compscitech.2010.05.022

    Article  Google Scholar 

  2. Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615. doi:10.1016/j.compscitech.2012.01.005

    Article  Google Scholar 

  3. Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67(13):2807–2816. doi:10.1016/j.compscitech.2007.01.030

    Article  Google Scholar 

  4. Marras SI, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polymer J 43(6):2191–2206. doi:10.1016/j.eurpolymj.2007.03.013

    Article  Google Scholar 

  5. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453(2):75–96. doi:10.1016/j.tca.2006.11.002

    Article  Google Scholar 

  6. Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915. doi:10.1023/a:1022308705231

    Article  Google Scholar 

  7. Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24(1):45–52. doi:10.1002/(sici)1099-1018(200001/02)24:1<45:aid-fam719>3.0.co;2-s

    Article  Google Scholar 

  8. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  9. Gao D, Li R, Lv B, Ma J, Tian F, Zhang J (2015) Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Compos B Eng 77:329–337. doi:10.1016/j.compositesb.2015.03.061

    Article  Google Scholar 

  10. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29. doi:10.1016/s0169-1317(99)00017-4

    Article  Google Scholar 

  11. Karuntarut Sermsantiwanita SP (2012) Preparation of bio-based nanocomposite emulsions: effect of clay type. Prog Org Coat 74:660–666

    Article  Google Scholar 

  12. Pascual J, Fages E, Fenollar O, Garcia D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62(3):367–380. doi:10.1007/s00289-008-0018-7

    Article  Google Scholar 

  13. Beltrán MI, Benavente V, Marchante V, Marcilla A (2013) The influence of surfactant loading level in a montmorillonite on the thermal, mechanical and rheological properties of EVA nanocomposites. Appl Clay Sci 83–84:153–161. doi:10.1016/j.clay.2013.08.028

    Article  Google Scholar 

  14. Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72(2):305–313. doi:10.1016/j.compscitech.2011.11.018

    Article  Google Scholar 

  15. Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536. doi:10.1016/j.tifs.2010.07.008

    Article  Google Scholar 

  16. Huskić M, Žigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl Clay Sci 85:109–115. doi:10.1016/j.clay.2013.09.004

    Article  Google Scholar 

  17. Osman MA, Rupp JEP, Suter UW (2005) Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46(19):8202–8209. doi:10.1016/j.polymer.2005.06.101

    Article  Google Scholar 

  18. Wang H, Fang P, Chen Z, Wang S, Xu Y, Fang Z (2008) Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polym Int 57(1):50–56. doi:10.1002/pi.2310

    Article  Google Scholar 

  19. Montgomery DC (2008) Design and analysis of experiments. Wiley, Hoboken

    Google Scholar 

  20. Baena-Murillo E, Micó-Vicent B, Martínez-Verdú FM (2013) Method for the synthesis of nanostructured hybrid pigments having properties that can be syntonized. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013110841&recNum=229&docAn=ES2013070026&queryString=(ANA:ES)&maxRec=25813

  21. Kohno Y, Inagawa M, Ikoma S, Shibata M, Matsushima R, Fukuhara C, Tomita Y, Maeda Y, Kobayashi K (2011) Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Appl Clay Sci 54(3):202–205. doi:10.1016/j.clay.2011.09.001

    Article  Google Scholar 

  22. Kaneko Y, Iyi N, Bujdak J, Sasai R, Fujita T (2004) Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites. J Colloid Interface Sci 269(1):22–25. doi:10.1016/s0021-9797(03)00602-7

    Article  Google Scholar 

  23. Silva AA, Dahmouche K, Soares BG (2011) Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl Clay Sci 54(2):151–158. doi:10.1016/j.clay.2011.08.002

    Article  Google Scholar 

  24. Park S-J, Kim B-J, Seo D-I, Rhee K-Y, Lyu Y-Y (2009) Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater Sci Eng A 526(1–2):74–78. doi:10.1016/j.msea.2009.07.023

    Article  Google Scholar 

  25. Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39(5):922–932. doi:10.1016/j.watres.2004.12.008

    Article  Google Scholar 

  26. Fahn R, Fenderl K (1983) Reaction-products of organic-dye molecules with acid-treated montmorillonite. Clay Miner 18(4):447–458. doi:10.1180/claymin.1983.018.4.10

    Article  Google Scholar 

  27. Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337(1):117–121. doi:10.1016/j.jcis.2009.04.065

    Article  Google Scholar 

  28. Capilla P, Pujol J (2002) Fundamentos de Colorimetría. Universitat de Valencia

  29. Gilabert EJ, Verdú FMM (2007) Medida de la luz y el color. Editorial de la UPV. In: Color psicofísico, pp 185–221

  30. Zhao H, Nagy KL (2004) Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interface Sci 274(2):613–624. doi:10.1016/j.jcis.2004.03.055

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bàrbara Micó-Vicent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micó-Vicent, B., Jordán, J., Martínez-Verdú, F. et al. A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. J Mater Sci 52, 889–898 (2017). https://doi.org/10.1007/s10853-016-0384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0384-8

Keywords

Navigation