Skip to main content
Log in

Enhanced Photocatalytic Performance of Supported Fe Doped ZnO Nanorod Arrays Prepared by Wet Chemical Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Supported Fe doped ZnO nanorod arrays with different doping concentrations were synthesized by a facile wet chemical method. The structures, surface morphologies and optical properties were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectrometer (PL) and ultraviolet–visible (UV–Vis) spectrophotometer. The results demonstrated that the nanorod arrays uniformly grew aligned along with the [002] direction, densely overspreading the whole substrates. Both PL and UV–Vis spectra presented an extension to visible wavelength range. The photocatalytic activity was evaluated by photodegradation of methyl orange (MO) under UV light irradiation. Supported Fe doped ZnO nanorod arrays exhibited enhanced photocatalytic activity, and the supported 1.0 % Fe doped ZnO nanorod arrays reached to the maximum. After 2 h irradiation, almost 97 % MO solution was decomposed. Supported Fe doped ZnO nanorod arrays could be practical used in environment applications.

Graphical Abstract

Supported Fe doped ZnO nanorod arrays were synthesized by wet chemical method. Supported nanorod arrays exhibited better photocatalytic activity than that of nanocrystalline. Fe doping enhanced the photocatalytic activity furthermore, and it reached to an optimum for 1.0 % Fe. More marked defects introduced by doping should take responsibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Li BX, Wang YF (2010) J Phys Chem C 114:890–896

    Article  CAS  Google Scholar 

  2. Barreca D, Ferrucci AP, Gasparotto A, Maccato C, Maragno C, Tondello E (2007) Chem Vap Depos 13:618–625

    Article  CAS  Google Scholar 

  3. Ma SS, Li R, Lv CP, Xu W, Gou XL (2011) J Hazard Mater 192:730–740

    Article  CAS  Google Scholar 

  4. Simon Q, Barreca D, Bekermann D, Gasparotto A, Maccato C, Comini E, Gombac V, Fornasiero P, Lebedev OI, Turner S, Devi A, Fischer RA, Van Tendeloo G (2011) Int J Hydrogen Energy 36:15527–15537

    Article  CAS  Google Scholar 

  5. Barreca D, Bekermann D, Comini E, Devi A, Fischer RA, Gasparotto A, Maccato C, Sberveglieri G, Tondello E (2010) Sens Actuators B 149:1–7

    Article  CAS  Google Scholar 

  6. Wu D, Gao Z, Xu F, Chang J, Tao W, He J, Gao S, Jiang K (2013) CrystEngComm 15:1210–1217

    Article  CAS  Google Scholar 

  7. Zhang C, Lin J (2012) Chem Soc Rev 41:7938–7961

    Article  CAS  Google Scholar 

  8. Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102–105

    Article  CAS  Google Scholar 

  9. Wang SW, Yu Y, Zuo YH, Li CZ, Yang JH, Lu CH (2012) Nanoscale 4:5895–5901

    Article  CAS  Google Scholar 

  10. Barreca D, Bekermann D, Devi A, Fischer RA, Gasparotto A, Maccato C, Tondello E, Rossi M, Orlanducci S, Terranova ML (2010) Chem Phys Lett 500:287–290

    Article  CAS  Google Scholar 

  11. Barreca D, Bekermann D, Comini E, Devi A, Fischer RA, Gasparotto A, Maccato C, Sada C, Sberveglieri G, Tondello E (2010) CrystEngComm 12:3419

    Article  CAS  Google Scholar 

  12. Park KT, Xia F, Kim SW, Kim SB, Song T, Paik U, Park WI (2012) J Phys Chem C 117:1037–1043

    Article  Google Scholar 

  13. Zhang YY, Ram MK, Stefanakos EK, Goswami DY (2012) J Nanomater 2012:624520

    Google Scholar 

  14. Wang ZL (2009) Mater Sci Eng. R 64:33–71

    Google Scholar 

  15. Kundu P, Deshpande PA, Madras G, Ravishankar N (2011) J Mater Chem 21:4209–4216

    Article  CAS  Google Scholar 

  16. Simon Q, Barreca D, Gasparotto A, Maccato C, Montini T, Gombac V, Fornasiero P, Lebedev OI, Turner S, Van Tendeloo G (2012) J Mater Chem 22:11739–11747

    Article  CAS  Google Scholar 

  17. Bekermann D, Gasparotto A, Barreca D, Bovo L, Devi A, Fischer RA, Lebedev OI, Maccato C, Tondello E, Van Tendeloo G (2010) Cryst Growth Des 10:2011–2018

    Article  CAS  Google Scholar 

  18. Huang X, Wang M, Willinger M-G, Shao L, Su DS, Meng X-M (2012) ACS Nano 6:7333–7339

    Article  CAS  Google Scholar 

  19. Kubacka A, Fernandez-Garcia M, Colon G (2012) Chem Rev 112:1555–1614

    Article  CAS  Google Scholar 

  20. Lin L, Yang Y, Men L, Wang X, He D, Chai Y, Zhao B, Ghoshroy S, Tang Q (2013) Nanoscale 5:588–593

    Article  CAS  Google Scholar 

  21. Zhou MJ, Hu Y, Liu Y, Yang WL, Qian HS (2012) CrystEngComm 14:7686–7693

    Article  CAS  Google Scholar 

  22. Zhu H, Jiang R, Fu Y, Guan Y, Yao J, Xiao L, Zeng G (2012) Desalination 286:41–48

    Article  CAS  Google Scholar 

  23. Thongsuriwong K, Amornpitoksuk P, Suwanboon S (2013) Adv Powder Technol 24:275–280

    Article  CAS  Google Scholar 

  24. Larsen GK, Fitzmorris R, Zhang JZ, Zhao Y (2011) J Phys Chem C 115:16892–16903

    Article  CAS  Google Scholar 

  25. Han Z, Liao L, Wu Y, Pan H, Shen S, Chen J (2012) J Hazard Mater 217–218:100–106

    Article  Google Scholar 

  26. Jongnavakit P, Amornpitoksuk P, Suwanboon S, Ndiege N (2012) Appl Surf Sci 258:8192–8198

    Article  CAS  Google Scholar 

  27. Gao J, Luan X, Wang J, Wang B, Li K, Li Y, Kang P, Han G (2011) Desalination 268:68–75

    Article  CAS  Google Scholar 

  28. Xie SL, Lu XH, Zhai T, Li W, Yu MH, Liang CL, Tong YX (2012) J Mater Chem 22:14272–14275

    Article  CAS  Google Scholar 

  29. Umar A, Chauhan MS, Chauhan S, Kumar R, Kumar G, Al-Sayari SA, Hwang SW, Al-Hajry A (2011) J Colloid Interface Sci 363:521–528

    Article  CAS  Google Scholar 

  30. Song HS, Zhang WJ, Cheng C, Tang YB, Luo LB, Chen X, Luan CY, Meng XM, Zapien JA, Wang N, Lee CS, Bello I, Lee ST (2011) Cryst Growth Des 11:147–153

    Article  CAS  Google Scholar 

  31. Cai XY, Liu YJ, Zeng H, Cai Y, Li H, Zhang F, Wang YD (2012) Mater Technol 27:380–387

    Article  CAS  Google Scholar 

  32. Xie J, Li Y, Zhao W, Bian L, Wei Y (2011) Powder Technol 207:140–144

    Article  CAS  Google Scholar 

  33. Huang Y, Wei Y, Wu J, Guo C, Wang M, Yin S, Sato T (2012) Appl Catal B Environ 123–124:9–17

    Article  Google Scholar 

  34. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2013) Surf Coat Technol 217:119–123

    Article  CAS  Google Scholar 

  35. Dong S, Xu K, Liu J, Cui H (2011) Physica B 406:3609–3612

    Article  CAS  Google Scholar 

  36. Zhang P, Shao C, Li X, Zhang M, Zhang X, Sun Y, Liu Y (2012) J Hazard Mater 237–238:331–338

    Article  Google Scholar 

  37. Yin XT, Que WX, Liao YL, Zhang J, Shen FY (2012) Mater Res Innov 16:213–218

    Article  CAS  Google Scholar 

  38. Ahmed F, Kumar S, Arshi N, Anwar MS, Heo SN, Koo BH (2012) Acta Mater 60:5190–5196

    Article  CAS  Google Scholar 

  39. Anghel J, Thurber A, Tenne DA, Hanna CB, Punnoose A (2010) J Appl Phys 107:09E314

    Article  Google Scholar 

  40. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  41. Zhang Y, Wang Q, Xu J, Ma S (2012) Appl Surf Sci 258:10104–10109

    Article  CAS  Google Scholar 

  42. Xu X, Xu C, Lin Y, Ding T, Fang S, Shi Z, Xia W, Hu J (2012) Appl Phys Lett 100:172401

    Article  Google Scholar 

  43. Janotti A, Van de Walle CG (2007) Phys Rev B 76:165202

    Article  Google Scholar 

  44. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Adv Funct Mater 20:561–572

    Article  CAS  Google Scholar 

  45. Krishna Reddy J, Srinivas B, Durga Kumari V, Subrahmanyam M (2009) ChemCatChem 1:492–496

    Article  CAS  Google Scholar 

  46. Zhong JB, Li JZ, Lu Y, He XY, Zeng J, Hu W, Shen YC (2012) Appl Surf Sci 258:4929–4933

    Article  CAS  Google Scholar 

  47. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Desalination 261:3–18

    Article  CAS  Google Scholar 

  48. Khanchandani S, Kundu S, Patra A, Ganguli AK (2013) J Phys Chem C 117:5558–5567

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of National Key Basic Research and Development Program (No.2010CB631001) and the Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, S., Zhao, L. & Lian, J. Enhanced Photocatalytic Performance of Supported Fe Doped ZnO Nanorod Arrays Prepared by Wet Chemical Method. Catal Lett 144, 347–354 (2014). https://doi.org/10.1007/s10562-013-1106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1106-3

Keywords

Navigation